首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28874篇
  免费   413篇
  国内免费   190篇
测绘学   476篇
大气科学   1710篇
地球物理   5716篇
地质学   10991篇
海洋学   2822篇
天文学   6241篇
综合类   55篇
自然地理   1466篇
  2022年   285篇
  2021年   477篇
  2020年   459篇
  2019年   531篇
  2018年   1050篇
  2017年   985篇
  2016年   1012篇
  2015年   467篇
  2014年   898篇
  2013年   1611篇
  2012年   1070篇
  2011年   1347篇
  2010年   1293篇
  2009年   1446篇
  2008年   1277篇
  2007年   1425篇
  2006年   1286篇
  2005年   750篇
  2004年   717篇
  2003年   712篇
  2002年   726篇
  2001年   624篇
  2000年   512篇
  1999年   438篇
  1998年   418篇
  1997年   413篇
  1996年   341篇
  1995年   350篇
  1994年   322篇
  1993年   259篇
  1992年   293篇
  1991年   253篇
  1990年   291篇
  1989年   274篇
  1988年   234篇
  1987年   284篇
  1986年   240篇
  1985年   302篇
  1984年   329篇
  1983年   310篇
  1982年   288篇
  1981年   281篇
  1980年   246篇
  1979年   287篇
  1978年   232篇
  1977年   231篇
  1976年   204篇
  1975年   207篇
  1974年   181篇
  1973年   225篇
排序方式: 共有10000条查询结果,搜索用时 984 毫秒
131.
The physical meaning of the terms of the potential and kinetic energy expressions, expanded by means of the density variation function for a nonuniform self-gravitating sphere, is discussed. The terms of the expansions represent the energy and the moment of inertia of the uniform sphere, the energy and the moment of inertia of the nonuniformities interacting with the uniform sphere, and the energy of the nonuniformities interacting with each other. It follows from the physical meaning of the above components of the energy structure, and also from the observational fact of the expansion of the Universe that the phase transition, notably, fusion of particles and nuclei and condensation of liquid and solid phases of the expanded matter accompanied by release of energy, must be the physical cause of initial thermal and gravitational instability of the matter. The released kinetic energy being constrained by the general motion of the expansion, develops regional and local turbulent (cyclonic) motion of the matter, which should be the second physical effect responsible for the creation of celestial bodies and their rotation.  相似文献   
132.
133.
134.
CO maps of the Bok globule B335 are presented and used to derive its density profile, mass distribution, and rotational velocity structure. It is found that the cloud is in nearly hydrostatic equilibrium with a density profile that varies roughly as r?1 in the core and r?3 in the envelope. The observed rotation is unimportant in the force balance at the present stage of evolution.  相似文献   
135.
136.
We present H2CO observations of young protostar candidates in the Serpens Cloud Core. We find evidence for dense molecular gas in the cores of these objects that is warmer than the surrounding dust. The strong emission and gas properties support the premise that many of these sources may be very young protostars.  相似文献   
137.
The inflationary unvierse model predicts the density parameter 0 to be 1.0 with the cosmological constant 0 usually taken to be zero, whereas observational estimates give 00.2 and 010-57 cm–2. It was found, however, that the observed variation of angular diameter with redshift for extragalactic radio sources could be interpreted in terms of a low density universe with linear size evolution of the sources for either an inflationary model with 0 or an open model with =0.  相似文献   
138.
The period-growth dichotomy of the solar cycle predicts that cycle 21, the present solar cycle, will be of long duration (>133 mo), ending after July 1987. Bimodality of the solar cycle (i.e., cycles being distributed into two groups according to cycle length, based on a comparison to the mean cycle period) is clearly seen in a scatter diagram of descent versus ascent durations. Based on the well-observed cycles 8–20, a linear fit for long-period cycles (being a relatively strong inverse relationship that is significant at the 5% level and having a coefficient of determination r 2 0.66) suggests that cycle 21, having an ascent of 42 mo, will have a descent near 99 mo; thus, cycle duration of about 141 mo is expected. Like cycle 11, cycle 21 occurs on the downward envelope of the sunspot number curve, yet is associated with an upward first difference in amplitude. A comparison of individual cycle, smoothed sunspot number curves for cycles 21 and 11 reveals striking similarity, which suggests that if, indeed, cycle 21 is a long-period cycle, then it too may have an extended tail of sustained, low, smoothed sunspot number, with cycle 22 minimum occurring either in late 1987 or early 1988.  相似文献   
139.
It has been proposed that the observed solar neutrino flux exhibits important correlations with solar particles, galactic cosmic rays, and the sunspot cycle, with the latter correlation being opposite in phase and lagging behind the sunspot cycle by about one year. Re-examination of the data-available interval 1971–1981, employing various tests of statistical significance, however, suggests that such a claim is, at present, unwarrantable. For example, on the associations of solar neutrino flux and cosmic-ray flux with the Ap geomagnetic index, neither were found to be statistically significant (at the 95% level of confidence), regardless of the choice of lag (-1, 0, or +1 yr). Presuming linear fits, all correlations with Ap had coefficients of determination (r 2, where r is the linear correlation coefficient) less than 16%, meaning that 16% of the variation in the selected test parameters could be explained by the variation in Ap. Similarly, on the associations of solar neutrino flux and cosmic ray flux with sunspot number, only the latter association proved to be of statistical importance. Using the best linear fits, the correlation between yearly averages of solar neutrino flux and sunspot number had r 2 19%, the correlation between weighted moving averages (of order 5) of solar neutrino flux and sunspot number had r 2 45%, and the correlation between cosmic-ray flux and sunspot number had r 2 76%, all correlations being inverse associations. Solar neutrino flux was found not to correlate strongly with cosmic-ray flux, and the Ap geomagnetic index was found not to correlate strongly with sunspot number.  相似文献   
140.
Observations made by the differential method in the H line have revealed longperiod (on a timescale of 40 to 80 min) line-of-sight velocity oscillations which increase in amplitude with distance from the centre to the solar limb and, as we believe, give rise to prominence oscillations. As a test, we present some results of simultaneous observations at the photospheric level where such periods are absent.Oscillatory processes in the solar chromosphere have been studied by many authors. Previous efforts in this vein led to the detection of shortperiod oscillations in both the mass velocities and radiation intensity (Deubner, 1981). The oscillation periods obtained do not, normally, exceed 10–20 min (Dubov, 1978). More recently, Merkulenko and Mishina (1985), using filter observations in the H line, found intensity fluctuations with periods not exceeding 78 min. However, the observing technique they used does not exclude the possibility that those fluctuations were due to the influence of the Earth's atmosphere. It is also interesting to note that in spectra obtained by Merkulenko and Mishina (1985), the amplitude of the 3 min oscillations is anomalously small and the 5 min period is altogether absent, while the majority of other papers treating the brightness oscillations in the chromosphere, do not report such periods in the first place. So far, we are not aware of any other evidence concerning the longperiod velocity oscillations in the chromosphere on a timescale of 40–80 min.Longperiod oscillations in prominences (filaments) in the range from 40 to 80 min, as found by Bashkirtsev et al. (1983) and Bashkirtsev and Mashnich (1984, 1985), indicate that such oscillations can exist in both the chromosphere and the corona (Hollweg et al., 1982).In this note we report on experimental evidence for the existence of longperiod oscillations of mass velocity in the solar chromosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号