首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35455篇
  免费   543篇
  国内免费   283篇
测绘学   850篇
大气科学   2736篇
地球物理   7084篇
地质学   12810篇
海洋学   3127篇
天文学   7220篇
综合类   79篇
自然地理   2375篇
  2021年   319篇
  2020年   356篇
  2019年   375篇
  2018年   838篇
  2017年   834篇
  2016年   967篇
  2015年   569篇
  2014年   930篇
  2013年   1871篇
  2012年   1096篇
  2011年   1456篇
  2010年   1274篇
  2009年   1590篇
  2008年   1415篇
  2007年   1379篇
  2006年   1377篇
  2005年   1013篇
  2004年   1021篇
  2003年   941篇
  2002年   931篇
  2001年   831篇
  2000年   815篇
  1999年   655篇
  1998年   612篇
  1997年   689篇
  1996年   552篇
  1995年   563篇
  1994年   553篇
  1993年   454篇
  1992年   472篇
  1991年   427篇
  1990年   470篇
  1989年   428篇
  1988年   417篇
  1987年   466篇
  1986年   399篇
  1985年   514篇
  1984年   536篇
  1983年   552篇
  1982年   505篇
  1981年   455篇
  1980年   481篇
  1979年   418篇
  1978年   371篇
  1977年   374篇
  1976年   337篇
  1975年   333篇
  1974年   326篇
  1973年   313篇
  1972年   199篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
A system for displaying tidal currents in an electronic chart display and information system (ECDIS) has been developed and implemented in compliance with the standards of the International Hydrographic Organization (IHO). The tidal current fields can be displayed in real time on the electronic navigational chart and several options and functions for updating and zooming have been designed. The current fields are calculated from a data base with the harmonic constants for the four major tidal constituents. The harmonic constants are obtained from a high resolution numerical model with horizontal grid resolution of 100 m. The model is validated by comparing with sea level and current measurements. The depth matrix for the central part of the model domain was calculated from data from multibeam bathymetric surveys. An application example of the implementation is given for Trondheimsleia, a part of the main sailing route along the western coast of Norway.  相似文献   
962.
Earth’s fastest present seafloor spreading occurs along the East Pacific Rise near 31°–32° S. Two of the major hydrothermal plume areas discovered during a 1998 multidisciplinary geophysical/hydrothermal investigation of these mid-ocean ridge axes were explored during a 1999 Alvin expedition. Both occur in recently eruptive areas where shallow collapse structures mark the neovolcanic axis. The 31° S vent area occurs in a broad linear zone of collapses and fractures coalescing into an axial summit trough. The 32° S vent area has been volcanically repaved by a more recent eruption, with non-linear collapses that have not yet coalesced. Both sites occur in highly inflated areas, near local inflation peaks, which is the best segment-scale predictor of hydrothermal activity at these superfast spreading rates (150 mm/yr).  相似文献   
963.
Rapid shifts in past climate recorded in polar ice sheets have elicited various explanations relating to either thermohaline circulation changes by ice-rafting or natural greenhouse gas concentrations modulated by climatic conditions in the tropics. To compare the tropical paleoclimate record with the polar record, one must choose sediment cores from highly productive ocean regions. Necessarily, such regions reflect the wind records in the tropics, because high productivity is associated with upwelling driven by winds. Comparing tropical precipitation records with high-latitude records is, however, a more difficult task because sediments recording paleoprecipitation usually have low sedimentation rates, and offer coarser resolution relative to polar ice cores. Here, we present δ 18O data of three planktonic species of Foraminifera (a proxy for precipitation) from such a sediment core, spanning the past 35 ka for the equatorial Indian Ocean, which falls under the southwest monsoon (SWM) realm. Results show that minimum SWM precipitation occurred at the Last Glacial Maximum, with a subsequent increase at Termination IA. During the Holocene, SWM precipitation intensified uniformly up to the core top (∼2.2 ka b.p.), as revealed by generally decreasing δ 18O values. Variations in precipitation are consistent with climate changes recorded in polar ice sheets. Although the different resolutions of the two records preclude a rigorous comparison, abrupt cooling/warming events appear to be accompanied by sudden reduction/enhancement in (SWM) rainfall. Thus, mechanisms with time scales much shorter than a millennium, such as natural greenhouse warming (e.g., CH4 concentration), controlled by emissions from the tropics, could have played a major role in high-latitude climate change.  相似文献   
964.
Between June 2004 and September 2004 a temporary seismic network was installed on the northern insular shelf of Iceland and onshore in north Iceland. The seismic setup aimed at resolving the subsurface structure and, thus, the geodynamical transition from Icelandic crust to typical oceanic crust along Kolbeinsey Ridge. The experiment recorded about 1,000 earthquakes. The region encloses the Tjörnes Fracture Zone containing the Husavik–Flatey strike-slip fault and the extensional seismic Grimsey Lineament. Most of the seismicity occurs in swarms offshore. Preliminary results reveal typical mid-ocean crust north of Grimsey and a heterogeneous structure with major velocity anomalies along the seismic lineaments and north–south trending subsurface features. Complementary bathymetric mapping highlight numerous extrusion features along the Grimsey Lineament and Kolbeinsey Ridge. The seismic dataset promises to deliver new insights into the tectonic framework for earthquakes in an extensional transform zone along the global mid-ocean ridge system.  相似文献   
965.
Changes in climatic parameters and in temperature and precipitation extremes in northern Eurasia in the late 20th century are analyzed. A spatial distribution of temperature and precipitation anomalies and of a set of indices of climate extremes is presented. Changes in climate extremes show a tendency toward a milder climate, mainly in winter. At the same time, the frost-free period has substantially decreased in the eastern, northern, and central parts of European Russia. In some regions during summer, there is an increase in the frequency of extreme events such as heavy rains, droughts, and sharp cooling. It is shown that the geographic pattern of present-day climate anomalies is linked to variations in the large-scale atmospheric circulation. The main mechanism of the current warming in northern Eurasia is a winter intensification of zonal flow linked to the increased frequency of positive anomalies of the North Atlantic Oscillation index.  相似文献   
966.
967.
Results of experiments are considered for flows generated by different sources-sinks of mass in the rotating annular channel with beta-effect simulation using the inclined bottom. Diagrams of regimes are presented in parameters of the dimensionless angular velocity of the zonal flow averaged over the channel width and the dimensionless angular velocity of transport of vortex perturbations of cyclonic and anticyclonic types. In experiments and the simplest linear theories, most attention is paid to diagram regions with a slow motion of vortices relative to the rotating coordinate system near the parameters for stationary Rossby waves.  相似文献   
968.
Multi‐step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3‐h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the development of real‐time rainfall‐runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3 h. In this paper, we develop a novel semi‐distributed, data‐driven, rainfall‐runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network‐based Fuzzy Inference System solutions is created using various combinations of autoregressive, spatially lumped radar and point‐based rain gauge predictors. Different levels of spatially aggregated radar‐derived rainfall data are used to generate 4, 8 and 12 sub‐catchment input drivers. In general, the semi‐distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead times greater than 3 h. Performance is found to be optimal when spatial aggregation is restricted to four sub‐catchments, with up to 30% improvements in the performance over lumped and point‐based models being evident at 5‐h lead times. The potential benefits of applying semi‐distributed, data‐driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, are thus demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
969.
Following a period of net uplift at an average rate of 15±1 mm/year from 1923 to 1984, the east-central floor of Yellowstone Caldera stopped rising during 1984–1985 and then subsided 25±7 mm during 1985–1986 and an additional 35±7 mm during 1986–1987. The average horizontal strain rates in the northeast part of the caldera for the period from 1984 to 1987 were: 1 = 0.10 ± 0.09 strain/year oriented N33° E±9° and 2 = 0.20 ± 0.09 strain/year oriented N57° W±9° (extension reckoned positive). A best-fit elastic model of the 1985–1987 vertical and horizontal displacements in the eastern part of the caldera suggests deflation of a horizontal tabular body located 10±5 km beneath Le Hardys Rapids, i.e., within a deep hydrothermal system or within an underlying body of partly molten rhyolite. Two end-member models each explain most aspects of historical unrest at Yellowstone, including the recent reversal from uplift to subsidence. Both involve crystallization of an amount of rhyolitic magma that is compatible with the thermal energy requirements of Yellowstone's vigorous hydrothermal system. In the first model, injection of basalt near the base of the rhyolitic system is the primary cause of uplift. Higher in the magmatic system, rhyolite crystallizes and releases all of its magmatic volatiles into the shallow hydrothermal system. Uplift stops and subsidence starts whenever the supply rate of basalt is less than the subsidence rate produced by crystallization of rhyolite and associated fluid loss. In the second model, uplift is caused primarily by pressurization of the deep hydrothermal system by magmatic gas and brine that are released during crystallization of rhyolite and them trapped at lithostatic pressure beneath an impermeable self-sealed zone. Subsidence occurs during episodic hydrofracturing and injection of pore fluid from the deep lithostatic-pressure zone into a shallow hydrostatic-pressure zone. Heat input from basaltic intrusions is required to maintain Yellowstone's silicic magmatic system and shallow hydrothermal system over time scales longer than about 105 years, but for the historical time period crystallization of rhyolite can account for most aspects of unrest at Yellowstone, including seismicity, uplift, subsidence, and hydrothermal activity.  相似文献   
970.
The microstructures in the Erro-Tobbio peridotite indicate several stages of recrystallization of olivine + titanian clinohumite-bearing assemblages. The development of these assemblages is closely associated with serpentinite mylonites, in which they occur in shear bands and foliations and are inferred to have grown synkinematically, in veins, and as post-kinematic radial aggregates. In the peridotite wall-rock adjacent to these mylonites, the same assemblages have recrystallized statically at the expense of original olivine and pyroxenes, mesh-textured chrysolite and antigorite veins. In addition, the olivine-bearing assemblage occurs in widespread vein systems. The brittle deformation of the peridotite resulting in the development of these vein systems is closely related to ductile deformation of metagabbroic dykes in the peridotite. Although early metasomatism resulted in extensive rodingitization of the gabbros, some dykes show an eclogitic assemblage of Na-clinopyroxene + garnet + chloritoid + chlorite ± talc. These observations, the microstructures and the mineral chemistry all suggest that the assemblages in the ultramafic rocks and metagabbros developed during a prograde evolution towards high pressures (>13–16 kbar, 450–550° C), and during subsequent decompression. This metamorphic evolution is considered to be related to Late Cretaceous intraoceanic subduction in the Alps-Apennine system and closure of the Piedmont-Ligurian basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号