首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   19篇
  国内免费   6篇
测绘学   10篇
大气科学   46篇
地球物理   86篇
地质学   128篇
海洋学   32篇
天文学   51篇
自然地理   74篇
  2024年   2篇
  2022年   1篇
  2021年   9篇
  2020年   10篇
  2019年   4篇
  2018年   10篇
  2017年   12篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   19篇
  2012年   15篇
  2011年   20篇
  2010年   25篇
  2009年   30篇
  2008年   24篇
  2007年   20篇
  2006年   22篇
  2005年   17篇
  2004年   18篇
  2003年   20篇
  2002年   13篇
  2001年   12篇
  2000年   10篇
  1999年   9篇
  1998年   12篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   8篇
  1990年   1篇
  1989年   6篇
  1988年   1篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有427条查询结果,搜索用时 31 毫秒
311.
After the 2005 Kashmir earthquake, we mapped surface ground fractures in Tangdhar, Uri, Rajouri and Punch sectors and liquefaction features in Jammu area lying close to the eastern side of the Line of Control (LOC) in Kashmir, India. The NW trending ground fractures occurred largely in the hanging wall zone of the southeastern extension of the causative fault in Tangdhar and Uri sectors. The principal compressive stress deduced from the earthquake induced ground fractures is oriented at N10°, whereas the causative Balakot–Bagh fault strikes 330°. The fault-plane solution indicates primarily SW thrusting of the causative fault with a component of strike–slip motion. The ground fractures reflect pronounced strike–slip together with some tensile component. The Tangdhar area showing left-lateral strike–slip motion lies on the hanging wall, and the Uri region showing right-lateral strike–slip movement is located towards the southeastern extension of the causative fault zone. The shear fractures are related to static stress that was responsible for the failure of causative fault. The tensile fractures with offsets are attributed to combination of both static and dynamic stresses, and the fractures and openings without offsets owe their origin due to dynamic stress. In Punch–Rajouri and Jammu area, which lies on the footwall, the fractures and liquefactions were generated by dynamic stress. The occurrence of liquefaction features in the out board part of the Himalayan range front near Jammu is suggestive of stress transfer  230 km southeast of the epicenter. The Balakot–Bagh Fault (BBF), the Muzaffarabad anticline, the rupture zone of causative fault and the zone of aftershocks — all are aligned in a  25 km wide belt along the NW–SE trending regional Himalayan strike of Kashmir region and lying between the MBT and the Riasi Thrust (Murree Thrust), suggesting a seismogenic zone that may propagate towards the southeast to trigger an earthquake in the eastern part of the Kashmir region.  相似文献   
312.
Small-scale terrains on salt materials were surveyed with a Total Station and a series of digital elevation models (DEMs) constructed. Two sets of observations were made, eight months apart, during which the terrains underwent significant erosion. The difference in elevation shown by the DEMs, calculated by subtraction, is a measure of surface erosion of the salt terrains. The erosion rate was analysed with respect to four terrain parameters calculated in the software. High erosion rates, and their strong control by terrain slope, are demonstrated, supporting an earlier study using erosion pins. Slope profile curvature is also indicated as having some influence. The combination of scanning Total Station and DEM software is shown to be an effective tool for investigating rapid geomorphic change at this scale of study.  相似文献   
313.
We present a theoretically consistent framework for modelling Lagrangian particle deposition in plant canopies. The primary focus is on describing the probability of particles encountering canopy elements (i.e., potential deposition), and provides a consistent means for including the effects of imperfect deposition through any appropriate sub-model for deposition efficiency. Some aspects of the framework draw upon an analogy to radiation propagation through a turbid medium with which to develop model theory. The present method is compared against one of the most commonly used heuristic Lagrangian frameworks, namely that originally developed by Legg and Powell (Agricultural Meteorology, 1979, Vol. 20, 47–67), which is shown to be theoretically inconsistent. A recommendation is made to discontinue the use of this heuristic approach in favour of the theoretically consistent framework developed herein, which is no more difficult to apply under equivalent assumptions. The proposed framework has the additional advantage that it can be applied to arbitrary canopy geometries given readily measurable parameters describing vegetation structure.  相似文献   
314.
Boundary-Layer Meteorology - Scintillometry is a non-invasive measurement technique for acquiring spatially-averaged surface heat and moisture fluxes in areas where setting up arrays of instruments...  相似文献   
315.
Studies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units.  相似文献   
316.
Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (\(H_\mathrm{d}/H_\mathrm{u}\)) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.  相似文献   
317.
318.
Accurate well ties are essential to practical seismic lithological interpretation. As long as the geology in the vicinity of the reservoir is not unduly complex, the main factors controlling this accuracy are the processing of the seismic data and the construction of the seismic model from well logs. This case study illustrates how seismic data processing to a near-offset stack, quality control of logs and petrophysical modelling improved a well tie at an oil reservoir. We demonstrate the application of a predictive petrophysical model in the preparation and integration of the logs before building the seismic model and we quantify our improvements in well-tie accuracy. The data for the study consisted of seismic field data from a 3D sail line through a well in a North Sea oilfield and a suite of standard logs at the well. A swathe of fully processed 3D data through the well was available for comparison. The well tie in the shallow section from first-pass seismic data processing and a routinely edited sonic log was excellent. The tie in a deeper interval containing the reservoir was less satisfactory: the phase errors within the bandwidth of the seismic wavelet were of the order of 20°, which we consider too large for subsequent transformation of the data to seismic impedance. Reprocessing the seismic data and revision of the well-log model reduced these phase errors to less than 10° and improved the consistency of the deep and shallow well ties. The reprocessing included densely picked iterative velocity analysis, prestack migration, beam-forming multiple attenuation, stacking the near-offset traces and demigration and remigration of the near-offset data. The petrophysical model was used to monitor and, where necessary, replace the P-wave sonic log with predictions consistent with other logs and to correct the sonic log for mud-filtrate invasion in the hydrocarbon-bearing sand. This editing and correction of the P-wave transit times improved the normal-incidence well tie significantly. The recordings from a monopole source severely underestimated the S-wave transit times in soft shale formations, including the reservoir seal, where the S-wave velocity was lower than the P-wave velocity in the drilling mud. The petrophysical model predicted an S-wave log that matched the valid recordings and interpolated between them. The subsequent seismic modelling from the predicted S-wave log produced a class II AVO anomaly seen on the CDP gathers around the well.  相似文献   
319.
A computational study is presented on the hydraulics of a natural pool–rif?e sequence composed of mixed cobbles, pebbles and sand in the River Lune, northern England. A depth‐averaged two‐dimensional numerical model is employed, calibrated with observed data at the ?eld site. From the computational outputs, the occurrence of longitudinally double peak zones of bed shear stress and velocity is found. In particular, at low discharge there exists a primary peak zone of bed shear stress and velocity at the rif?e tail in line with the local maximum energy slope, in addition to a secondary peak at the pool head. As discharge increases, the primary peak at the rif?e tail at low ?ow moves toward the upstream side of the rif?e along with the maximum energy slope, showing progressive equalization to the surrounding hydraulic pro?les. Concurrently, the secondary peak, due to channel constriction, appears to stand at the pool head, with its value increasing with discharge and approaching or exceeding the primary peak over the rif?e. The existence of ?ow reversal is demonstrated for this speci?c case, which is attributable to channel constriction at the pool head. A dynamic equilibrium model is presented to reconstruct the pool–rif?e morphology. A series of numerical modelling exercises demonstrates that the pool–rif?e morphology is more likely produced by shallow ?ows concentrated with coarse sediments than deep ?ows laden with low concentrations of ?ne sediments. It is concluded that channel constriction can, but may not necessarily, lead to competence reversal, depending on channel geometry, ?ow discharge and sediment properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
320.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号