首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   19篇
  国内免费   6篇
测绘学   10篇
大气科学   46篇
地球物理   86篇
地质学   128篇
海洋学   32篇
天文学   50篇
自然地理   74篇
  2024年   1篇
  2022年   1篇
  2021年   9篇
  2020年   10篇
  2019年   4篇
  2018年   10篇
  2017年   12篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   19篇
  2012年   15篇
  2011年   20篇
  2010年   25篇
  2009年   30篇
  2008年   24篇
  2007年   20篇
  2006年   22篇
  2005年   17篇
  2004年   18篇
  2003年   20篇
  2002年   13篇
  2001年   12篇
  2000年   10篇
  1999年   9篇
  1998年   12篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   8篇
  1990年   1篇
  1989年   6篇
  1988年   1篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有426条查询结果,搜索用时 15 毫秒
101.
Three components of magnetization have been observed in ninety-six samples (twelve sites) of amygdaloidal basalts and “sedimentary greenstones” of the Unicoi Formation in the Blue Ridge Province of northeast Tennessee and southwest Virginia. These components could be isolated by alternating field as well as thermal demagnetization. One component, with a direction close to that of the present-day geomagnetic field is ascribed to recent viscous remanent magnetizations; another component, with intermediate blocking temperatures and coercivities, gives a mean direction of D = 132°, I = +43°,α95 = 9° for N = 10 sites before correction for tilt of the strata. This direction and the corresponding pole position are close to Ordovician/Silurian data from the North American craton and we infer this magnetization to be due to a thermal(?) remagnetization during or after the Taconic orogeny. This magnetization is of post-folding origin, which indicates that the Blue Ridge in our area was structurally affected by the Taconic deformation. The third component, with the highest blocking temperatures and coercivities, appears to reside in hematite. Its mean direction, D = 276°, I = ?17°,α95 = 13.8° for N = 6 sites (after tilt correction) corresponds to a pole close to Latest Precambrian and Cambrian poles for North America. The fold test is inconclusive for this magnetization at the 95% confidence level because of the near-coincidence of the strike and the declinations. We infer this direction to be due to early high-temperature oxidation of the basalts, and argue that its magnetization may have survived the later thermal events because of its intrinsic high blocking temperatures. A detailed examination of the paleomagnetic directions from this study reveals that the Blue Ridge in this area may have undergone a small counterclockwise rotation of about 15°.  相似文献   
102.
The lateral propagation of faults and folds is known to be an important process during the development of mountain belts, but little is known about the manner in which along‐strike fault–fold growth is expressed in pre‐ and syntectonic (growth) strata. We use a coupled tectonic and stratigraphic model to investigate the along‐strike stratigraphic expression of fault‐related folds/uplifts that grow in both the transport and strike directions. We consider faults that propagate following a quadratic (nonself‐similar evolution) or linear (self‐similar evolution) scaling law, using different slip distributions per episode of fault propagation, under general background sedimentation. We find that the long‐strike geometry of pre‐ and syntectonic strata and the geometry of growth axial surfaces reflect the mode of fault propagation. The geometry of strata observed in the model is similar to that observed in natural contractional structures when: (1) the evolution of the fault is nonself‐similar, or (2) the fault grows as a result of thrust faulting events with similar displacements along strike that are terminated abruptly at the fault tips.  相似文献   
103.
Using the unprecedented observational facilities deployed duringthe 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99),we found three distinct turbulent events on the night of 18October 1999. These events resulted from a density current,solitary wave, and internal gravity wave, respectively. Our studyfocuses on the turbulence intermittency generated by the solitarywave and internal gravity wave, and intermittent turbulenceepisodes associated with pressure change and wind direction shiftsadjacent to the ground. Both the solitary and internal gravitywaves propagated horizontally and downward. During the passage ofboth the solitary and internal gravity waves, local thermal andshear instabilities were generated as cold air was pushed abovewarm air and wind gusts reached to the ground. These thermal andshear instabilities triggered turbulent mixing events. Inaddition, strong vertical acceleration associated with thesolitary wave led to large non-hydrostatic pressure perturbationsthat were positively correlated with temperature. The directionaldifference between the propagation of the internal gravity waveand the ambient flow led to lateral rolls. These episodic studiesdemonstrate that non-local disturbances are responsible for localthermal and shear instabilities, leading to intermittentturbulence in nocturnal boundary layers. The origin of thesenon-local disturbances needs to be understood to improve mesoscalenumerical model performance.  相似文献   
104.
The synthesis of paleoclimatic archives provided by loess and alluvial sequences of central Argentina has been hindered by the lack of a cohesive lithostratigraphic framework extending across the Chaco-Pampean plains and catchments of the Rios Desaguadero, Colorado, and Negro. This condition originates in part from the dearth of absolute chronological controls. The occurrence of discrete tephra layers across this region may provide an opportunity to address this deficiency if a tephrochronological framework can be established. The potential of such a project is assessed within the context of a pilot study constrained within alluvial sequences of central western Argentina proximal to potential source vents in the Southern Volcanic Zone. The intersite discrimination and correlation of tephra layers on a geochemical basis is examined, with indirect chronological control for the eruption of each generated by optical dating. Alluvial sediments on either side of each of five tephra units at a type site were dated using the optically stimulated luminescence of fine-silt-sized quartz, thus providing an age control on each tephra (ca. 24,000, 30,000, 32,000, 39,000, and 48,000 yr). The geochemical composition of each tephra was derived. Using these data, tephra layers at other sites in the study area were geochemically analyzed and, in instances of statistical concordance in major oxide structure, correlated to the type site and therefore ascribed ages. This methodology identified a further sixth volcanic event between ca. 24,000 and 30,000 yr not registered by type-site tephras. The extension of this initial tephrochronological framework beyond the alluvial sequences of central western Argentina is encouraged by the occurrence of geochemically distinct tephra verified and dated in this study.  相似文献   
105.
106.
107.
Within a large collection of lavas from the Roccamonfina volcano are rocks which represent the most mafic samples yet recorded from Roccamonfina and which are amongst the least differentiated lavas found in the Roman co-magmatic region as a whole. These rocks extend both high-K and low-K series to more primitive values. However, petrographic and geochemical considerations rule out a primary origin, and even these mafic samples appear to record the effects of repeated episodes of fractional crystallization and hybridization. Relatively potassic samples from the low-K series are apparently transitional between low-K and high-K series, as previously delineated. However, these intermediate-K samples are not transitional in their Sr isotopic composition, suggesting that there is no continuum between low-K and high-K magma source regions. Rather, the compositional range within the low-K series appears predominantly to reflect variation in the degree of melting of a common mantle source. Analysis of the low-K series data, using an inverse method suggests a source containing amphibole and garnet, and indicates that these phases were consumed during the melting processes responsible for the low-K series magmas. The role of amphibole is further indicated by the association of low K2O with elevated Rb concentration and, for example, higher Ce/Yb. Such variations are taken to reflect the consumption of high K/Rb amphibole during the initial phase of partial melting.  相似文献   
108.
Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, DM=9.3°) and early Late Proterozoic (ca. 850–900 Ma) at 10°S, 163°E (dp=3.5°, DM=7.0°). A new 40Ar/39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred 200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.  相似文献   
109.
110.
The technique of receiver function analysis is applied to the study of crustal and upper mantle structures beneath the Kaapvaal craton in southern Africa and its surroundings. Seismic data were recorded by the seismic array of 82 sites deployed from April 1997 to April 1999 across southern Africa, as well as a dense array of 32 sites near Kimberley, in operation from December 1998 to June 1999. Arrival times for phases converted at the Moho are used to determine crustal thickness. The Moho depth in the south–western section of the craton was found to vary between 37 and 40 km, except for one station that recorded a depth of 43 km (SA23). Farther north along the western block of the craton (into Botswana) the depth increases up to 43 km. The depth increases even further in the north–eastern section of the craton, where results vary from 40 to 52 km. Just north of the Kaapvaal craton, in the neighbouring Zimbabwe craton, the crustal thickness drops significantly. The results obtained there varied from 36 to 40 km. For the Kimberley area, using the dense array, the Moho depth was found to be 37.3 km. Arrivals of the Ps and Ppps phases were used to determine the Poisson’s ratio in the region. This was found to be 0.26±0.01. Arrivals of phases from the 410 and 660 km mantle discontinuities are used to interpret the relative positions of these discontinuities, as well as for comparison of mantle temperatures and seismic velocities in the region with global averages. In the Kimberley area the 410 and 660 km discontinuities were found at their expected depth, implying that mantle temperatures in the region are close to the global average. The seismic velocities above the ‘410’ were found up to 5% faster than the averages from the global iasp91 model, which is fast even by Precambrian standards. In other sections of the Kaapvaal craton, the velocities are also faster than global averages, but not as fast as beneath Kimberley. In these sections, the ‘410’ is also slightly elevated, while the ‘660’ is depressed, which implies a slightly lower mantle temperature relative to the global average. Beneath the Kaapvaal craton we find evidence suggesting the presence of a zone with a reduced wavespeed gradient at an upper bound of approximately 300 km, which may mark the lower chemical boundary of the craton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号