首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4807篇
  免费   159篇
  国内免费   53篇
测绘学   108篇
大气科学   423篇
地球物理   1025篇
地质学   1590篇
海洋学   435篇
天文学   901篇
综合类   11篇
自然地理   526篇
  2021年   48篇
  2020年   56篇
  2019年   74篇
  2018年   77篇
  2017年   83篇
  2016年   106篇
  2015年   115篇
  2014年   113篇
  2013年   253篇
  2012年   151篇
  2011年   236篇
  2010年   191篇
  2009年   277篇
  2008年   197篇
  2007年   183篇
  2006年   172篇
  2005年   162篇
  2004年   173篇
  2003年   169篇
  2002年   160篇
  2001年   98篇
  2000年   109篇
  1999年   98篇
  1998年   98篇
  1997年   61篇
  1996年   75篇
  1995年   66篇
  1994年   61篇
  1993年   59篇
  1992年   54篇
  1991年   67篇
  1990年   53篇
  1989年   51篇
  1988年   43篇
  1987年   67篇
  1986年   50篇
  1985年   63篇
  1984年   81篇
  1983年   61篇
  1982年   56篇
  1981年   71篇
  1980年   61篇
  1979年   52篇
  1978年   68篇
  1977年   50篇
  1976年   58篇
  1975年   37篇
  1974年   39篇
  1973年   37篇
  1971年   36篇
排序方式: 共有5019条查询结果,搜索用时 546 毫秒
981.
In recent years, several sets of legislation worldwide (Oceans Act in USA, Australia or Canada; Water Framework Directive or Marine Strategy in Europe, National Water Act in South Africa, etc.) have been developed in order to address ecological quality or integrity, within estuarine and coastal systems. Most such legislation seeks to define quality in an integrative way, by using several biological elements, together with physico-chemical and pollution elements. Such an approach allows assessment of ecological status at the ecosystem level ('ecosystem approach' or 'holistic approach' methodologies), rather than at species level (e.g. mussel biomonitoring or Mussel Watch) or just at chemical level (i.e. quality objectives) alone. Increasing attention has been paid to the development of tools for different physico-chemical or biological (phytoplankton, zooplankton, benthos, algae, phanerogams, fishes) elements of the ecosystems. However, few methodologies integrate all the elements into a single evaluation of a water body. The need for such integrative tools to assess ecosystem quality is very important, both from a scientific and stakeholder point of view. Politicians and managers need information from simple and pragmatic, but scientifically sound methodologies, in order to show to society the evolution of a zone (estuary, coastal area, etc.), taking into account human pressures or recovery processes. These approaches include: (i) multidisciplinarity, inherent in the teams involved in their implementation; (ii) integration of biotic and abiotic factors; (iii) accurate and validated methods in determining ecological integrity; and (iv) adequate indicators to follow the evolution of the monitored ecosystems. While some countries increasingly use the establishment of marine parks to conserve marine biodiversity and ecological integrity, there is awareness (e.g. in Australia) that conservation and management of marine ecosystems cannot be restricted to Marine Protected Areas but must include areas outside such reserves. This contribution reviews the current situation of integrative ecological assessment worldwide, by presenting several examples from each of the continents: Africa, Asia, Australia, Europe and North America.  相似文献   
982.
Casuarina cunninghamiana Miq. is an important rheophytic tree in New South Wales, Australia because it is fast growing and can tolerate flood disturbance. Widden Brook is an active sand‐bed stream that has widened substantially since initial European settlement in the early 1800s and is characterized by high flood variability and multi‐decadal periods of alternating high and low flood frequency, called flood‐ and drought‐dominated regimes. Channel contraction by bench formation is currently occurring. Conversion of coarse‐grained point bars to benches is an important process of channel contraction. When point bars grow to a height where suspended sediment is first deposited to thicknesses of at least 50 mm by sub‐bankfull floods, rapid establishment of C. cunninghamiana occurs. As the trees grow they partially block bankside flows, thereby locally reducing flow velocity and inducing further deposition on the benches. Such synergistic relationships between bar height and inundation, fine‐grained sediment deposition, tree establishment and the development of a bankside low current velocity zone are fundamental for bench development. Size‐class frequency data demonstrate that C. cunninghamiana on the benches consists of pure even‐aged stands with most trees clustering near the average diameter. Two benches have similar size class frequency distributions but a third has significantly smaller trees. Recruitment on benches is episodic, may occur in areas open to grazing and is dependent on favourable conditions that allow tree survival. These favourable conditions include high seed availability, low levels of competition, deposition of fine sediments and adequate moisture for tree growth. Although C. cunninghamiana germinates on bars, seedlings are eliminated by prolonged inundation or flood scour and do not reach maturity. Recurring catastrophic floods or a sequence of large floods in rapid succession episodically destroy benches by substantial channel widening and initiate a new phase of bar and bench development. A conceptual model of the conversion of point bars to benches by thick mud deposition and C. cunninghamiana recruitment has been developed for sand‐bed streams draining similar sandstone catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
983.
984.
The determination of sediment storage is a critical parameter in sediment budget analyses. But, in many sediment budget studies the quantification of magnitude and time‐scale of sediment storage is still the weakest part and often relies on crude estimations only, especially in large drainage basins (>100 km2). We present a new approach to storage quantification in a meso‐scale alpine catchment of the Swiss Alps (Turtmann Valley, 110 km2). The quantification of depositional volumes was performed by combining geophysical surveys and geographic information system (GIS) modelling techniques. Mean thickness values of each landform type calculated from these data was used to estimate the sediment volume in the hanging valleys and the trough slopes. Sediment volume of the remaining subsystems was determined by modelling an assumed parabolic bedrock surface using digital elevation model (DEM) data. A total sediment volume of 781·3×106–1005·7×106 m3 is deposited in the Turtmann Valley. Over 60% of this volume is stored in the 13 hanging valleys. Moraine landforms contain over 60% of the deposits in the hanging valleys followed by sediment stored on slopes (20%) and rock glaciers (15%). For the first time, a detailed quantification of different storage types was achieved in a catchment of this size. Sediment volumes have been used to calculate mean denudation rates for the different processes ranging from 0·1 to 2·6 mm/a based on a time span of 10 ka. As the quantification approach includes a number of assumptions and various sources of error the values given represent the order of magnitude of sediment storage that has to be expected in a catchment of this size. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
985.
The changing form of developing alluvial river bars has rarely been studied in the field, especially in the context of the fixed, compound, mainly alternate gravel bars that are the major morphological feature of the wandering style. Century scale patterns of three‐dimensional growth and development, and the consequent scaling relations of such bars, are examined along the gravel‐bed reach of lower Fraser River, British Columbia, Canada. A retrospective view based on maps and aerial photographs obtained through the twentieth century shows that individual bars have a life history of about 100 years, except in certain, protected positions. A newly formed gravel bar quickly assumes its ultimate thickness and relatively quickly approaches its equilibrium length. Growth continues mainly by lateral accretion of unit bars, consistent with the lateral style of instability of the river. Bar growth is therefore allometric. Mature bars approach equilibrium dimensions and volume that scale with the overall size of the channel. Accordingly, the bars conform with several published criteria for the ultimate dimensions of alternate barforms. Sand bars, observed farther downstream, have notably different morphology. Fraser River presents a typical wandering channel planform, exhibiting elements of both meandered and low‐order braided channels. Hydraulic criteria to which the Fraser bars conform illustrate why this planform develops and persists. The modest rate of bed material transfer along the channel – typical of the wandering type – determines a century‐length time scale for bar development. This time scale is consistent with estimates that have been made for change of the macroform elements that determine the overall geometry of alluvial channels. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
986.
The objectives of this study were to: (1) measure water column concentrations of Irgarol 1051 and its major metabolite GS26575 annually (2004-2006) during mid-June and mid-August at 14 sites in a study area comprised of three sub-regions chosen to reflect a gradient in Irgarol exposure (Port Annapolis marina, Severn River and Severn River reference area); (2) use a probabilistic approach to determine ecological risk of Irgarol and its major metabolite in the study area by comparing the distribution of exposure data with toxicity-effects endpoints; and (3) measure both functional and structural resident phytoplankton parameters concurrently with Irgarol and metabolite concentrations to assess relationships and determine ecological risk at six selected sites in the three study areas described above. The three-year summer mean Irgarol concentrations by site clearly showed a gradient in concentrations with greater values in Back Creek (400-500 ng/L range), lower values in the Severn River sites near the confluence with Back Creek (generally values less than 100 ng/L) and still lower values (<10 ng/L) at the Severn River reference sites at the confluence with Chesapeake Bay. A similar spatial trend, but with much lower concentrations, was also reported for GS26575. The probability of exceeding the Irgarol plant 10th centile of 193 ng/L and the microcosm NOEC (323 ng/L) suggested high ecological risk from Irgarol exposure at Port Annapolis marina sites but much lower risk at the other sites. There were no statistically significant differences among the three site types (marina, river and reference) with all years combined or among years within a site type for the following functional and structural phytoplankton endpoints: algal biomass, gross photosynthesis, biomass normalized photosynthesis, chlorophyll a, chlorophyll a normalized photosynthesis and taxa richness. Therefore, based on the above results, Irgarol adverse effects predicted from the plant 10th centile and the microcosm NOEC in the high Irgarol exposure area (Back Creek/Port Annapolis marina) were not confirmed with the actual field data for the receptor species (phytoplankton). These results also highlight the importance of unconfined field studies with a chemical gradient in providing valuable information regarding the responses of resident phytoplankton to herbicides.  相似文献   
987.
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT.  相似文献   
988.
The pseudodynamic (PSD) test method imposes command displacements to a test structure for a given time step. The measured restoring forces and displaced position achieved in the test structure are then used to integrate the equations of motion to determine the command displacements for the next time step. Multi‐directional displacements of the test structure can introduce error in the measured restoring forces and displaced position. The subsequently determined command displacements will not be correct unless the effects of the multi‐directional displacements are considered. This paper presents two approaches for correcting kinematic errors in planar multi‐directional PSD testing, where the test structure is loaded through a rigid loading block. The first approach, referred to as the incremental kinematic transformation method, employs linear displacement transformations within each time step. The second method, referred to as the total kinematic transformation method, is based on accurate nonlinear displacement transformations. Using three displacement sensors and the trigonometric law of cosines, this second method enables the simultaneous nonlinear equations that express the motion of the loading block to be solved without using iteration. The formulation and example applications for each method are given. Results from numerical simulations and laboratory experiments show that the total transformation method maintains accuracy, while the incremental transformation method may accumulate error if the incremental rotation of the loading block is not small over the time step. A procedure for estimating the incremental error in the incremental kinematic transformation method is presented as a means to predict and possibly control the error. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
989.
A prototype flow meter has been developed, based upon the heat perturbation principle, to monitor groundwater specific discharge in soft sediments. The device is designed for use in spatially intensive, long-term monitoring campaigns in remote or inconvenient locations, and is cheap, robust and capable of being logged automatically. The results of the laboratory tests indicate that the heat perturbation principle is suitable for determining the magnitude of specific discharge to a degree of accuracy that would be useful in practical applications in dynamic groundwater systems with rapidly changing flows of approximately 1 md−1 or more and that the groundwater flow direction can generally be determined to a high level of precision. The accuracy and reliability of the estimates of specific discharge have been shown to depend strongly upon the geometrical precision of manufacture and the quality of the temperature monitoring system. These factors become most significant in the estimation of lower flows and further investigation is required to determine the detection limit of the device. Specific discharge estimates have been shown to be insensitive to dispersivity values appropriate to the scale of the device. Unlike the majority of heat perturbation devices, calibration is unnecessary.  相似文献   
990.
The process basis of existing soil‐erosion models is shown to be ill‐founded. The existing literature builds directly or indirectly on Bennett's (1974) paper, which provided a blueprint for integrated catchment‐scale erosion modelling. Whereas Bennett recognized the inherent assumptions of the approach suggested, subsequent readings of the paper have led to a less critical approach. Most notably, the assumption that sediment movement could be approximated by a continuity equation that related to transport in suspension has produced a series of submodels that assume that all movement occurs in suspension. For commonly occurring conditions on hillslopes, this case is demonstrably untrue both on theoretical grounds and from empirical observations. Elsewhere in the catchment system, it is only partially true, and the extent to which the assumption is reasonable varies both spatially and temporally. A second ground‐breaking paper – that of Foster and Meyer (1972) – was responsible for subsequent uncritical application of a first‐order approximation to deposition based on steady‐state analysis and again a weak empirical basis. We describe in this paper an alternative model (Mahleran – Model for Assessing Hillslope‐Landscape Erosion, Runoff And Nutrients) based upon particle‐travel distance that overcomes existing limitations by incorporating parameterizations of the different detachment and transport mechanisms that occur in water erosion in hillslopes and small catchments. In the second paper in the series, we consider the sensitivity and general behaviour of Mahleran , and test it in relation to data from a large rainfall‐simulation experiment. The third paper of the sequence evaluates the model using data from plots of different sizes in monitored rainfall events. From this evaluation, we consider the scaling characteristics of the current form of Mahleran and suggest that integrated modelling, laboratory and field approaches are required in order to advance the state of the art in soil‐erosion modelling. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号