首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26078篇
  免费   519篇
  国内免费   266篇
测绘学   654篇
大气科学   1981篇
地球物理   5683篇
地质学   9138篇
海洋学   2132篇
天文学   5479篇
综合类   41篇
自然地理   1755篇
  2020年   154篇
  2019年   148篇
  2018年   306篇
  2017年   292篇
  2016年   444篇
  2015年   328篇
  2014年   450篇
  2013年   1223篇
  2012年   542篇
  2011年   828篇
  2010年   718篇
  2009年   1021篇
  2008年   874篇
  2007年   842篇
  2006年   856篇
  2005年   757篇
  2004年   783篇
  2003年   741篇
  2002年   732篇
  2001年   602篇
  2000年   622篇
  1999年   580篇
  1998年   564篇
  1997年   571篇
  1996年   470篇
  1995年   466篇
  1994年   449篇
  1993年   423篇
  1992年   384篇
  1991年   334篇
  1990年   384篇
  1989年   303篇
  1988年   347篇
  1987年   381篇
  1986年   328篇
  1985年   487篇
  1984年   532篇
  1983年   538篇
  1982年   423篇
  1981年   421篇
  1980年   441篇
  1979年   385篇
  1978年   399篇
  1977年   351篇
  1976年   379篇
  1975年   341篇
  1974年   386篇
  1973年   365篇
  1972年   233篇
  1971年   187篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
201.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   
202.
The quantitative assay of clay minerals, soils, and sediments for Fe(II) and total Fe is fundamental to understanding biogeochemical cycles occurring therein. The commonly used ferrozine method was originally designed to assay extracted forms of Fe(II) from non-silicate aqueous systems. It is becoming, however, increasingly the method of choice to report the total reduced state of Fe in soils and sediments. Because Fe in soils and sediments commonly exists in the structural framework of silicates, extraction by HCl, as used in the ferrozine method, fails to dissolve all of the Fe. The phenanthroline (phen) method, on the other hand, was designed to assay silicate minerals for Fe(II) and total Fe and has been proven to be highly reliable. In the present study potential sources of error in the ferrozine method were evaluated by comparing its results to those obtained by the phen method. Both methods were used to analyze clay mineral and soil samples for Fe(II) and total Fe. Results revealed that the conventional ferrozine method under reports total Fe in samples containing Fe in silicates and gives erratic results for Fe(II). The sources of error in the ferrozine method are: (1) HCl fails to dissolve silicates and (2) if the analyte solution contains Fe3+, the analysis for Fe2+ will be photosensitive, and reported Fe(II) values will likely be greater than the actual amount in solution. Another difficulty with the ferrozine method is that it is tedious and much more labor intensive than the phen method. For these reasons, the phen method is preferred and recommended. Its procedure is simpler, takes less time, and avoids the errors found in the ferrozine method.  相似文献   
203.
204.
Serpentine soils derived from the weathering of ultramafic rocks and their metamorphic derivatives (serpentinites) are chemically prohibitive for vegetative growth. Evaluating how serpentine vegetation is able to persist under these chemical conditions is difficult to ascertain due to the numerous factors (climate, relief, time, water availability, etc.) controlling and affecting plant growth. Here, the uptake, incorporation, and distribution of a wide variety of elements into the biomass of serpentine vegetation has been investigated relative to vegetation growing on an adjacent chert-derived soil. Soil pH, electrical conductivity, organic C, total N, soil extractable elements, total soil elemental compositions and plant digestions in conjunction with spider diagrams are utilized to determine the chemical relationships of these soil and plant systems. Plant available Mg and Ca in serpentine soils exceed values assessed in chert soils. Magnesium is nearly 3 times more abundant than Ca in the serpentine soils; however, the serpentine soils are not Ca deficient with Ca concentrations as high as 2235 mg kg−1. Calcium to Mg ratios (Ca:Mg) in both serpentine and chert vegetation are greater than one in both below and above ground tissues. Soil and plant chemistry analyses support that Ca is not a limiting factor for plant growth and that serpentine vegetation is actively moderating Mg uptake as well as tolerating elevated concentrations of bioavailable Mg. Additionally, results demonstrate that serpentine vegetation suppresses the uptake of Fe, Cr, Ni, Mn and Co into its biomass. The suppressed uptake of these metals mainly occurs in the plants’ roots as evident by the comparatively lower metal concentrations present in above ground tissues (twigs, leaves and shoots). This research supports earlier studies that have suggested that ion uptake discrimination and ion suppression in the roots are major mechanisms for serpentine vegetation to tolerate the chemistry of serpentine soils.  相似文献   
205.
This study presents results on the fluid and salt chemistry for the Makgadikgadi, a substantial continental basin in the semi-arid Kalahari. The aims of the study are to improve understanding of the hydrology of such a system and to identify the sources of the solutes and the controls on their cycling within pans. Sampling took place against the backdrop of unusually severe flooding as well as significant anthropogenic extraction of subsurface brines. This paper examines in particular the relationship between the chemistry of soil leachates, fresh stream water, salty lake water, surface salts and subsurface brines at Sua Pan, Botswana with the aim of improving the understanding of the system’s hydrology. Occasionally during the short wet season (December–March) surface water enters the saline environment and precipitates mostly calcite and halite, as well as dolomite and traces of other salts associated with the desiccation of the lake. The hypersaline subsurface brine (up to TDS 190,000 mg/L) is homogenous with minor variations due to pumping by BotAsh mine (Botswana Ash (Pty) Ltd.), which extracts 2400 m3 of brine/h from a depth of 38 m. Notable is the decrease in TDS as the pumping rate increases which may be indicative of subsurface recharge by less saline water. Isotope chemistry for Sr (87Sr/86Sr average 0.722087) and S (δ34S average 34.35) suggests subsurface brines have been subject to a lithological contribution of undetermined origin. Recharge of the subsurface brine from surface water including the Nata River appears to be negligible.  相似文献   
206.
207.
Two large-scale “in situ” demonstration experiments and their instrumentation are described. The first test (FEBEX Experiment) involves the hydration of a compacted bentonite barrier under the combined effect of an inner source of heat and an outer water flow from the confining saturated granite rock. In the second case, the progressive de-saturation of Opalinus clay induced by maintained ventilation of an unlined tunnel is analyzed. The paper shows the performance of different sensors (capacitive cells, psychrometers, TDR’s) and a comparison of fill behaviour with modelling results. The long term performance of some instruments could also be evaluated specially in the case of FEBEX test. Capacitive sensors provide relative humidity data during long transient periods characterised by very large variations of suction within the bentonite.  相似文献   
208.
209.
210.
A high resolution Boomer system was used to investigate the bedrock configuration of part of Port Jackson, New South Wales. The continuous reflection profiling technique was successful in delineating a channel incised in bedrock under a thickness of up to 60 m. of unconsolidated sediment covered by up to 20 m. of water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号