首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   2篇
测绘学   20篇
大气科学   11篇
地球物理   12篇
地质学   65篇
海洋学   13篇
天文学   46篇
综合类   3篇
自然地理   3篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   16篇
  2012年   6篇
  2011年   5篇
  2010年   8篇
  2009年   2篇
  2008年   7篇
  2007年   8篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1994年   1篇
  1993年   6篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   9篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   3篇
排序方式: 共有173条查询结果,搜索用时 62 毫秒
101.
The influx of Sr responsible for increase in marine Sr has been attributed to rise of Himalaya and weathering of the Himalayan rocks. The rivers draining Himalaya to the ocean by the northern part of the Indian sub-continent comprising the Ganga Alluvial Plain (GAP) along with Central parts of the Himalaya and the northern part of the Indian Craton are held responsible for the transformation of Sr isotopic signature. The GAP is basically formed by the Himalayan-derived sediments and serves as transient zone between the source (Himalaya) and the sink (Bay of Bengal). The Gomati River, an important alluvial tributary of the Ganga River, draining nearly 30,500 km2 area of GAP is the only river which is originating from the GAP. The river recycles the Himalayan-derived sediments and transport its weathering products into the Ganga River and finally to Bay of Bengal. 11 water samples were collected from the Gomati River and its intrabasinal lakes for measurement of Sr isotopic composition. Sr concentration of Gomati River water is about 335 μg/l, which is about five times higher than the world’s average of river water (70 μg/l) and nearly three times higher than the Ganga River water in the Himalaya (130 μg/l) The Sr isotopic ratios reported are also higher than global average runoff (0.7119) and to modern seawater (0.7092) values. Strong geochemical sediment–water interaction appearing on surface is responsible for the dissolved Sr isotopic ratios in the River water. Higher Sr isotopic rations found during post-monsoon than in pre-monsoon season indicate the importance of fluxes due to monsoonal erosion of the GAP into the Gomati River. Monsoon precipitation and its interaction with alluvium appear to be major vehicle for the addition of dissolved Sr load into the alluvial plain rivers. This study establishes that elevated 87Sr/86Sr ratios of the Gomati River are due to input of chemical weathering of alluvial material present in the Ganga Alluvial Plain.  相似文献   
102.
Aerosol (PM10) samples were collected and its precursor gases, i.e., NH3, NO, NO2, and SO2 measured over Bay of Bengal (BoB) during winter months of December 2008 to January 2009 to understand the relationship between particular matter (PM) and precursor gases. The observations were done under the winter phase of Integrated Campaign on Aerosols, gases and Radiation Budget (W_ICARB). The distribution of water-soluble inorganic ionic composition (WSIC) and its interaction with precursor gases over BoB are reported in present case. Average atmospheric concentration of NH3, NO, NO2, and SO2 were recorded as 4.78?±?1.68, 1.89?±?1.26, 0.31?±?0.14, and 0.80?±?0.30?μg?m?3, whereas WSIC component of PM10, i.e., NH4 +, SO4 2?, NO3 ?, and Cl? were recorded as 1.96?±?1.66, 8.68?±?3.75, 1.92?±?1.75, and 2.48?±?0.78?μg?m?3, respectively. In the present case, abundance of nss-SO4 2? in the particulate matter is recorded as 18?%. It suggests the possibility of long-range transport as well as marine biogenic origin. Higher SO4 2?/(SO2?+?SO4 2?) equivalent molar ratio during the campaign indicates the gas-to-particle conversion with great efficiency over the study region.  相似文献   
103.
The importance of groundwater is growing based on an increase in need and decrease in the availability of fresh surface water sources and adequate rainfall. Remote Sensing and Geographic Information System (GIS) has become one of the leading tools in the field of hydrogeological science, which helps in assessing, monitoring and conserving groundwater resources. This paper describes the results of a groundwater potentiality and quality assessment conducted in Koduvan ár sub-watershed of Meenachil river basin, Kottayam district of Kerala state, in the Republic of India. Shallow groundwater is the main source of drinking water in urban and rural areas, but reliable spatial data on its potentiality and quality are currently insufficient for developing the water-supply systems with standard designs. The methodology used in the present study includes an integrated approach of remote sensing and GIS for the construction of groundwater potentiality map and the assessment of water quality of identified wells. Different spatial data layers such as, geomorphology, lithology, slope and land use/ land cover are generated and the interrelationship between these layers were analyzed to identify and assess the groundwater potentiality of the area. The final result depicts the favourable prospective zones in the study area with its quality parameters and can be helpful to formulate recommendations to reduce the water scarcity and quality risks for public health.  相似文献   
104.
Crystallochemical data on metamict davidite from albitites and albitised rocks from the Bichun area (Jaipur district, Rajasthan, India) of Banded Gneissic Complex (BGC) are provided. Davidite occurs as euhedral, subhedral to anhedral crystals in the form of disseminated grains and also as fracture filled veins. The crystals of davidite are up to 8 cm in length and 6 cm in width. The powder X-ray diffraction (XRD) pattern of the heat-treated davidite (at \(900{^{\circ }}\hbox {C}\)) reveals well-defined reflections of crystallographic planes. The calculated unit-cell parameters of the heat treated davidite are: \(\hbox {a}_{0} = \hbox {b}_{0} = 10.3556 \, \text {\AA }\) and \(\hbox {c}_{0} = 20.9067 \, \text {\AA }\), with unit-cell volume \(\hbox {(V)} = 1941.6385 \, \text {\AA }^{3}\); and \({\upalpha }={\upbeta }= 90^{\circ }\) and \({\upgamma }= 120^{\circ }\), which are in agreement with the values of davidite standard. Geochemical data reveals that the investigated davidite contains 51.5–52.6% \(\hbox {TiO}_{2}\), 14.8–15.1% \(\hbox {Fe}_{2} \hbox {O}_{3}\), 9.8–10.2% FeO, 6.97–7.12% \(\hbox {U}_{3} \hbox {O}_{8}\), 6.72–6.92% \(\hbox {RE}_{2} \hbox {O}_{3}\), 3.85–3.61% \(\hbox {K}_{2}\hbox {O}\), 0.9–1.4% \(\hbox {Al}_{2} \hbox {O}_{3}\), and 0.8–1.2% \(\hbox {SiO}_{2}\). The calculated structural formulae of the two davidite crystals are: D-1: \(\hbox {K}_{0.0044/0.004} \hbox {Ba}_{0.0044/0.005} \hbox {Ca}_{0.20/0.20} \hbox {Na}_{0.012/0.012} \hbox {Mn}_{0.053/0.053} \hbox {Mg}_{0.14/0.14} \hbox {Pb}_{0.0076/0.008} \hbox {Fe}_{2.675/2.675} \hbox {Fe}_{1.59/1.59} \hbox {Y}_{0.1175/0.118} \hbox {P}_{0.053/0.053} \hbox {Nb}_{0.008/0.008} \hbox {Sn}_{0.001/0.001} \hbox {Zr}_{0.033/0.033} \hbox {U}_{0.468/0.468} \hbox {Th}_{0.009/0.009} \,\,\hbox {REE}_{0.6829/0.683})_{6.05/6.05} (\hbox {Ti}_{12.15/12.15}\,\, \hbox {Fe}_{1.9022/1.903} \hbox {Si}_{0.372/0.372}\,\, \hbox {Al}_{0.517/0.517}\,\, \hbox {Cr}_{0.018/0.018} \hbox {Co}_{0.009/0.009} \hbox {Ni}_{0.027/0.027})_{15/15} \hbox {O}_{36/36} (\hbox {OH}_{0.319/0.319[]1.681/1.681})_{2/2}\) and D-2: \((\hbox {K}_{0.004/0.004} \hbox {Ba}_{0.005/0.005} \hbox {Ca}_{0.20/0.20} \hbox {Na}_{0.012/0.012} \hbox {Mn}_{0.05/0.05} \hbox {Mg}_{0.094/0.094} \hbox {Pb}_{0.007/0.007} \hbox {Fe}_{2.58/2.58} \hbox {Fe}_{1.71/1.71} \hbox {Y}_{0.112/0.112} \hbox {P}_{0.106/0.106} \hbox {Nb}_{0.006/0.006} \hbox {Sn}_{0.001/0.001} \hbox {Zr}_{0.03/0.03} \hbox {U}_{0.48/0.48} \hbox {Th}_{0.009/0.009} \hbox {REE}_{0.665/0.665})_{6.088/6.088} (\hbox {Ti}_{12.48/12.48} \hbox {Fe}_{1.87/1.87} \hbox {Si}_{0.249/0.249} \hbox {Al}_{0.334/0.334} \hbox {Cr}_{0.019/0.019} \hbox {Co}_{0.008/0.008} \hbox {Ni}_{0.04/0.04})_{15/15} \hbox {O}_{36/36} (\hbox {OH}_{0.098/0.098[]1.90/1.90})_{2/2}\). The calculated structural formulae are not fully stoichiometric, which could be due to metamict nature of davidite. The characteristic feature of distribution pattern of REE in davidite is unusually high concentration of LREE and HREE and substantially low content of MREE. It may be due to the occupation of REEs in two distinct crystallographic sites in davidite structure, i.e., M(1) and M(O) sites. Chondrite-normalised plot of davidite reveals a pronounced negative Eu-anomaly (\(\hbox {Eu}/\hbox {Eu}^{*} = 0.30{-}0.39\)), which suggests extremely fractionated nature of the metasomatising fluids from which davidite had crystallized. Metamict davidite-bearing U ores not only from Rajasthan, but also from other parts of India are likely to yield very high U leachability, thereby making them attractive sources of U, which otherwise are ignored by mineral engineers as uneconomic U ores.  相似文献   
105.
We studied the cosmic ray intensity variation due to interplanetary magnetic clouds during an unusual class of low amplitude anisotropic wave train events. The low amplitude anisotropic wave train events in cosmic ray intensity have been identified using the data of ground based Deep River neutron monitor and studied during the period 1981–1994. Even though the occurrence of low amplitude anisotropic wave trains does not depend on the onset of interplanetary magnetic clouds, but the possibility of occurrence of these events cannot be overlooked during the periods of the interplanetary magnetic cloud events. It is observed that the solar wind velocity remains higher (> 300) than normal and the interplanetary magnetic field B remains lower than normal on the onset of the interplanetary magnetic cloud during the passage of low amplitude wave trains. It is also noted that the proton density remains significantly low during high solar wind velocity, which is expected. The north south component of interplanetary magnetic field Bz turns southward to one day before the arrival of cloud and remains in the southward direction after the arrival of a cloud. During these events the cosmic ray intensity is found to increase with increase of solar wind velocity. The superposed epoch analysis of cosmic ray intensity for these events during the onset of interplanetary magnetic clouds reveals that the decrease in cosmic ray intensity starts not at the onset of the cloud but after a few days. The cosmic ray intensity increases on arrival of the magnetic cloud and decreases gradually after the passage of the magnetic cloud.  相似文献   
106.
107.
We examine the conditions and processes of growth and preservation of multiaged monazite in micaceous matrix and in garnet porphyroblasts in staurolite–kyanite mica schists hosted in a hitherto-undiscovered shear zone that limits the northern extent of the Western Dharwar Craton (WDC), India. Garnet in the footwall schists grew during mid-crustal (600 ± 40 °C, 7.3 ± 1.2 kbar) loading and cooling as a consequence of the northward transport of the WDC lithologies. U–Th–Pb (total) ages in monazites in the matrix and in post-tectonic garnets yield well-defined peaks at 2.5, 2.2 and 1.9 Ga. In garnet, 2.5 and 2.2 Ga monazite grains, and 2.2 Ga monazites with 2.5 Ga cores are commonly occluded, but monazites with 1.9 Ga mantles around older cores are rare. By contrast, in the matrix, 1.9 Ga monazite grains and monazite with 1.9 Ga mantles around older cores are prominent, but the peak age frequencies of the two older populations are significantly lower than for monazites hosted as inclusions in garnet. Both in the matrix and garnet, the low-Th, high-Y domains in monazites yield the two older peak ages, while the 1.9 Ga ages correspond to the high-Th, low-Y domains. The preponderance of older ages in monazite hosted as inclusions in garnet relative to matrix monazites is because garnets formed between 2.2 and 1.9 Ga shielded the older monazites from dissolution–precipitation at 1.9 Ga. A few 1.9 Ga monazites hosted as inclusions in the garnet rims suggest renewed garnet growth at post-1.9 Ga. Multiple Pb–Pb age populations (2.5, 2.25, 2.1 and 1.8 Ga) in detrital zircon in the Sahanataha Group north of the Paleoarchean Antongil-Masora block (NE Madagascar) are identical to the multiple monazites ages north of the WDC, inferred to share a similar history and to be contiguous with the Antongil-Masora block in pre-Jurassic reconstructions of the Gondwanaland. We suggest the newly discovered Paleoproterozoic tectonic zone continued westward into Madagascar north of the Antongil-Masora block and constituted the hitherto-unexplained basement for the multiaged detrital zircons in the Sahanataha quartzites (337).  相似文献   
108.
Remote sensing data and Geographical Information System (GIS) has been integrated with the weighted index overlay (WIO) method and E 30 model for the identification and delineation of soil erosion susceptibility zones and the assessment of rate of soil erosion in the mountainous sub-watershed of River Manimala in Kerala (India). Soil erosion is identified as the one of the most serious environmental problems in the human altered mountainous environment. The reliability of estimated soil erosion susceptibility and soil loss is based on how accurately the different factors were estimated or prepared. In the present analysis, factors that are considered to be influence the soil erosion are: land use/land cover, NDVI, landform, drainage density, drainage frequency, lineament frequency, slope, and relative relief. By the WIO analysis, the area is divided into zones representing low (33.30%), moderate (33.70%), and high (33%) erosion proneness. The annual soil erosion rate of the area under investigation was calculated by carefully determining its various parameters and erosion for each of the pixels were estimated individually. The spatial pattern thus created for the area indicates that the average annual rate of soil erosion in the area was ranging from 0.04 mm yr−1 to 61.80 mm yr−1. The high soil erosion probability and maximum erosion rate was observed in areas with high terrain alteration, high relief and slopes with the intensity and duration of heavy precipitation during the monsoons.  相似文献   
109.
The southeastern fringe of the Precambrian Aravalli fold belt has been designated as Jahazpur Belt, which includes two greenschist facies metasedimentary lithopackages, Hindoli (Late Archean/Paleoproterozoic) and Jahazpur (Paleoproterozoic) Groups. We present geochemical data on metapelite (phyllite) and metagreywackes from the Hindoli Group. Metapelites are enriched in alumina while metagreywackes show a wide range and higher abundance of silica. Covariance between TiO2 — Al2O3, K2O — Al2O3 pairs and moderate to high SiO2/MgO ratios indicate a strong weathering control. Chemical Index of Alteration (CIA = 68 for metagraywackes; 75 for metapelites) reveals moderately weathered protoliths for them. Fractionated LREE pattern with almost flat HREE trend and moderate to high Eu anomalies (Eu/Eu* = 0.66 to 0.8) indicate feldspar bearing granite — granodiorite as probable compositions in the provenance. Very high PIA values (93) for metapelites reflect almost complete feldspar dissolution while the corresponding values for metagraywackes (68) are relatively lower. The diagnostic immobile trace elements (Sc, Zr, Th) can be interpreted as a variable felsic source (mainly granitic and subordinate granodioritic) for metagreywackes and a granodioritic (more mafic) one for metapelites. Considering the broad Precambrian geological set-up of NW India, the Banded Gneiss Complex (BGC), which predominantly comprises TTG gneisses and granites, amphibolite, etc. seems to be the most likely provenance for Hindoli sediments.  相似文献   
110.
The production rate of H2O molecules at a heliocentric distance of 1 AU for comet Halley and the abundance ratio with respect to water (H2O) of parent molecules at the cometary nucleus from the paper of Yamamoto (1987) have been used to compute the number densities of positive ions viz. H3O+, H3S+, H2CN+, H3CO+, CH3OH 2 + and NH 4 + at various cometocentric distances within 600 kms from the nucleus.The role of proton transfer reactions in producing major ionic species is discussed. A major finding of the present investigation is that NH 4 + ion which may be produced through proton transfer reactions is the most abundant ion near the nucleus of a comet unless the abundance of NH3 as a parent is abnormally low. Using the quoted value of Q(NH3)/Q(H2O) for comet Halley and the life times of NH3 and H2O molecules, the abundance ratio N(NH3)/N(H2O) is found to be one-third of that used in the present paper. The consequent proportionate decrease in the NH 4 + ions does not, however, affect its superiority in number density over other ions near the nucleus.The number density of the next most abundant ion viz. H3O+ is found to be 4 × 104 cm-3 at the nucleus of comet Halley and decreases by a factor of two only upto a distance of 600 K ms from the nucleus. The ionic mass peak recorded by VEGA and GIOTTO spacecrafts atm/q = 18 is most probably composite of the minor ionic species H2O+, as its number density = 102 cm-3 remains virtually constant in the inner coma and of NH 4 + , the number density of which at large cometocentric distances may add to the recorded peak atmlq = 18. The number densities of other major ions produced through proton transfer from H3O+ are also discussed in the region within 600 K ms from the nucleus of comet Halley.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号