首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   14篇
  国内免费   1篇
测绘学   3篇
大气科学   4篇
地球物理   54篇
地质学   46篇
海洋学   5篇
天文学   8篇
综合类   1篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   6篇
  2011年   9篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2006年   9篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1986年   1篇
  1984年   1篇
  1953年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
31.
The relationship between the magmatism of the Cretaceous Ofuku pluton and mineralization in and around the Akiyoshi Plateau, Yamaguchi Prefecture, Japan was investigated using a combination of field observation, petrographic and geochemical analyses, K–Ar geochronology, and fluid inclusion data. The Ofuku pluton has a surface area of 1.5 × 1.0 km, and was intruded into the Paleozoic accretionary complexes of the Akiyoshi Limestone, Ota Group and Tsunemori Formation in the western part of the Akiyoshi Plateau. The pluton belongs to the ilmenite‐series and is zoned, consisting mainly of early tonalite and granodiorite that share a gradational contact, and later granite and aplite that intruded the tonalite and granodiorite. Harker diagrams show that the Ofuku pluton has intermediate to silicic compositions ranging from 60.4 to 77.9 wt.% SiO2, but a compositional gap exists between 70.5 to 73.4 wt.% SiO2 (anhydrous basis). Modal and chemical variations indicate that the assumed parental magma is tonalitic. Quantitative models of fractional crystallization based on mass balance calculations and the Rayleigh fractionation model using major and trace element data for all crystalline phases indicate that magmatic fractionation was controlled mainly by crystal fractionation of plagioclase, hornblende, clinopyroxene and orthopyroxene at the early stage, and quartz, plagioclase, biotite, hornblende, apatite, ilmenite and zircon at the later stage. The residual melt extracted from the granodiorite mush was subsequently intruded into the northern and western parts of the Ofuku pluton as melt lens to form the granite and aplite. The age of the pluton was estimated at 99–97 Ma and 101–98 Ma based on K–Ar dating of hornblende and biotite, respectively. Both ages are consistent within analytical error, indicating that the Ofuku pluton and the associated Yamato mine belong to the Tungsten Province of the San‐yo Belt, which is genetically related to the ilmenite‐series granitoids of the Kanmon to Shunan stages. The aplite contains Cl‐rich apatite and REE‐rich monazite‐(Ce), allanite‐(Ce), xenotime and bastnäsite‐(Ce), indicating that the residual melt was rich in halogens and REEs. The tonalite–granodiorite of the Ofuku pluton contains many three‐phase fluid inclusions, along with daughter minerals such as NaCl and KCl, and vapor/liquid (V/L) volume ratios range from 0.2 to 0.9, suggesting that the fluid was boiling. In contrast, the granite and aplite contain low salinity two‐phase inclusions with low V/L ratios. The granodiorite occupies a large part of the pluton, and the inclusions with various V/L ratios with chloride daughter minerals suggest the boiling fluids might be related to the mineralization. This fluid could have carried base metals such as Cu and Zn, forming Cu ore deposits in and around the Ofuku pluton. The occurrence and composition of fluid inclusions in the igneous rocks from the Akiyoshi Plateau are directly linked to Cu mineralization in the area, demonstrating that fluid inclusions are useful indicators of mineralization.  相似文献   
32.
Examining the evolution of fracture permeability under stressed and temperature-elevated conditions, a series of flow-through experiments on a single rock fracture in granite has been conducted under confining pressures of 5 and 10 MPa, under differential water pressures ranging from 0.04 to 0.5 MPa, and at temperatures of 20–90 °C, for several hundred hours in each experiment. Measurements of fluid and dissolved mass fluxes, and post-experimental microscopy, were conducted to constrain the progress of mineral dissolution and/or precipitation and to examine its effect on transport properties. Generally, the fracture aperture monotonically decreased with time at room temperature, and reached a steady state in relatively short periods (i.e., <400 h). However, once the temperature was elevated to 90 °C, the aperture resumed decreasing and kept decreasing throughout the rest of the experimental periods. This reduction may result from the removal of the mineral mass from the bridging asperities within the fracture. Post-experimental observations by scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy (SEM-EDX), revealed the formation of several kinds of secondary minerals such as silica and calcite. However, the precipitated minerals seemed to have had little influence on the flow characteristics within the fracture, because the precipitation was limited to quite local and small areas. The evolving rates and ultimate magnitudes of the fracture aperture are likely to be controlled by the stress exerted over the contacting asperities and temperatures, and by the prescribed flow conditions. Thus, this complex behavior should be attributed to the coupled chemically- and mechanically-induced effect. A coupled chemo–mechano conceptual model, accounting for pressure and free-face dissolutions, is presented in this paper to follow the evolution of the fracture permeability observed in the flow-through experiments. This model addresses the two dissolution processes at the contacting asperities and the free walls within the fractures, and is also capable of describing multi-mineral dissolution behavior. The model shows that the evolution of a fracture aperture (or related permeability) and of element concentrations may be followed with time under arbitrary temperature and pressure conditions. The model predictions for the evolving fracture aperture and elements concentrations show a relatively good agreement with the experimental measurements, although it is not possible to replicate the abrupt reduction observed in the early periods of the experiments, which is likely to be due to an unaccounted mechanism of more stress-mediated fracture compaction driven by the fracturing of the propping asperities.  相似文献   
33.
Damage or collapse of buildings vulnerable to seismic forces may cause human casualties, and seismic upgrading of such structures is a practical solution to this deficiency. The study presented here proposes a simple approach to prevent structural collapse by separating the superstructure from its foundation to let the superstructure slide during extreme ground shaking. The sliding mechanism contributes to cap the horizontal force exerted on the superstructure. In such approach, the key is to maintain the friction force between the superstructure and the foundation sufficiently low and stable. This research proposes to realize a controlled sliding mechanism, which acts as a structural fuse, by means of carbon powder lubrication at the bases of the structure's columns. The fundamental behaviour of the proposed structural system, named the base shear capping building, is investigated by shaking table tests and numerical simulation. Both experimental and numerical results showed that graphite lubrication is an efficient and robust lubrication material, maintaining the friction coefficient between the steel column bases and mortar foundation at around 0.16. The sliding at the bases significantly reduced the acceleration transmitted to the superstructure, keeping the base shear coefficient not greater than about 0.40. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
34.
35.
A new model for upward transport of buoyant fluid released during metamorphism is proposed. The model is fluid transport by buoyancy-driven propagation of isolated fluid-filled cracks. The mechanical behavior of a two-dimensional, isolated, vertical, and fluid-filled crack in impermeable rock is investigated using linear fractire mechanics and fluid dynamics. The results show that steady-state crack propagation which causes long-distance transport of the fluid occurs when the vertical cross-sectional area of the crack exceeds a critical value. Propagation velocity and average thickness of the crack under the steady-state propagation regime are expressed explicitly by the following seven parameters: vertical crack length; rigidity, Poisson's ratio, and fracture toughness of the rock; fluid viscosity; density difference between the rock and the fluid; gravitational acceleration. An isolated H2O-filled crack of vertical length 100 m, for example, propagates upwards in the crust at 0.3 m/s with the average thickness 0.2 mm when the following likely values are assumed: 0.1 mPa s for the H2O viscosity; 3 MPa m1/2 for the fracture toughness of the crustal rock. The application of the obtained results to the transport of H2O released during metamorphism suggests that the number density of isolated cracks propagating in the crust is very low. Since the propagation velocity is high, our model is suitable particularly for fluid transport through hot quartz-rich rock where fluid-filled cracks have geologically short lifetimes.  相似文献   
36.
37.
Interaction between the external wall cladding and the seismic load resisting frame was examined in a full‐scale cyclic loading test of a three‐storey steel building structure. The building specimen had Autoclaved Lightweight Concrete (ALC, also designated as Autoclaved Aerated Concrete) panels installed and anchored to the structural frame as external wall cladding, using a standard Japanese method developed following the 1995 Kobe earthquake. ALC panelling is among the most widely used material for claddings in Japan. In the test, the ALC panel cladding contributed little to the stiffness and strength of the overall structure, even under a very large storey drift of 0.04 rad. No visible damage was noted in the ALC panels other than minor cracks and spalling of the bottom of the panels in the first storey. Consequently, in a Japanese steel building with properly installed ALC panel cladding, the structural frame is likely to be little affected by its cladding, and the ALC panels are capable of accommodating the maximum storey drift generally considered in structural design without sustaining discernible damage. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
38.
The Ohori deposit, one of the base metal deposits in the Green-Tuff region, NE Japan, is composed of two types of mineralization; a skarn-type (Kaninomata orebody) made by the replacement of the Miocene calcareous layer, and a vein-type (Nakanomata orebody). While the ore mineral assemblage of the deposit (chalcopyrite, pyrite, sphalerite and galena) has been known for being rather simple, some Pb-Bi-S minerals have been discovered for the first time in the present study. The minerals mainly occur in the chalcopyrite-rich ores of both orebodies. They essentially belong to the Pb-Bi-S system and contain Cu and Ag in minor amounts, which correspond to the lillianite–gustavite solid solution series (phases Z and X), cosalite, neyite, felbertalite, krupkaite and Bi-bearing galena. The chalcopyrite-rich (Bi-bearing) ores from both orebodies are richer in chalcopyrite, pyrite and chlorite, and have higher homogenization temperatures (>300°C) of fluid inclusions, and higher FeS contents in sphalerite compared to the Bi-free ores. In the Green-Tuff region, Bi-minerals have been reported from many base metal deposits. Most of these Bi-bearing ore deposits are referred to as xenothermal-type deposits, and are characterized by the following common features; composite mineralization of high- and low-temperatures in the shallower environments, and close relationships with the Tertiary granitic rocks. The whole mineralization at the Ohori deposit also has a similar xenothermal character because of the coexistence of high-temperature chalcopyrite-rich ores with Pb-Bi-S minerals, which were formed by the influence of the Tertiary granitic rocks at a shallow depth.  相似文献   
39.
The collapse of a one‐bay, four‐story steel moment frame is simulated in this study by the proposed peer‐to‐peer (P2P) Internet online hybrid test system. The typical beam hinging mechanism, which is ensured by a strong‐column, weak‐beam design, is reproduced. The plastic hinges at the column bases are taken as the experimental portions, while the superstructure is analyzed numerically by a general‐purpose finite element program. The implicit plastic rotations of the two column bases are treated as boundary displacements. In order to account for the complex behavior of the column bases, the P2P system is modified to use the secant stiffness during iterations, and the physical specimens are designed such that the plastic hinge behavior can be obtained. For this study, the three substructures are distributed to different locations. A large ground motion is repeatedly imposed until the column bases lose their capacity to sustain the gravity load. As a result, significant deterioration is observed at both column bases. The proposed P2P system is thus demonstrated to be able to accommodate multiple‐tested substructures involving unstable behavior. The results suggest that the P2P Internet online hybrid test system provides a reliable means of studying structures up to collapse. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
40.
Summary The mineralized stock of the Hobenzan granitic complex is composed of tonalite and a continuous differentiation series of biotite-hornblende granodiorite, hornblende biotite granite and biotite granite. Texture and mineral chemistry of the Fe-Ti oxide minerals in the Hobenzan granitic complex exhibit two different processes of magma evolution: one is an oxyexsolution process related to the magmatic and high temperature subsolidus stage, and the other is a reduction process of consecutive subsolidus stage. Rocks distributed in the northern part of the granitic complex preserve well the oxyexsolution process and show higher magnetic susceptibility, whereas those in the southern part of the complex, record the reduction process and show lower magnetic susceptibility.The magnetite-ilmenite geothermometer indicates temperatures of ca. 730°C for the oxide pairs of the early stage. Oxygen fugacity of one to three orders of magnitude higher than the annite-sanidine-magnetite (ASM) univariant curve, and an aqueous sulfur composition,fSO2/fH2S, of around 1.0 is indicated. This first stage corresponds to the crystallization of phenocrystic hornblende and plagioclase at depth. At about 700°C crystallization changed to biotite, K-feldspar and quartz, and continued to about 600°C. ThefO2 during this second stage is buffered by the ASM assemblage. This second stage defines the oxyexsolution process. Below about 600°C, a reduction process, caused by assimilation of carbonaceous matter of country rocks, overprinted the southern part of the complex. Oxide pairs show that thefO2 is about four orders of magnitude lower than the ASM univariant curve, andfSO2/fH2S is 10–8.0 or less at 550°C for this reduced assemblage. The drastic change in composition of sulfur-bearing aqueous species may be one of the principal factors allowing base metal mineralization.
Chemismus von Fe-Ti Oxiden des Hobenzan Granitkomplexes, SW Japan: Subsolidus Reduktion und ihre Beziehung zu metallischen Vererzungen
Zusammenfassung Der mineralisierte Hobenzan Granitkomplex setzt sich aus Tonaliten und einer kontinuierlichen Differentiationsserie, bestehend aus Biotit-Hornblende-Granodioriten, Hornblende-Biotit-Graniten und Biotit-Graniten, zusammen. Die Texturen und die Mineralchemie der Fe-Ti Oxide belegen zwei unterschiedliche Prozesse bei der Entwicklung des Hobenzan Granitkomplexes: einerseits einen Oxyexsolution-Prozeß, während des magmatischen und hochtemperierten Subsolidus-Stadiums, andererseits einen Reduktionsprozeß während des tiefertemperierten Subsolidus-Stadiums. Gesteine im nördlichen Hobenzan Komplex belegen vor allem den Oxyexsolution Prozeß und zeigen höhere magnetische Suszeptibilität, während jene im südlichen Teil den Reduktionsprozeß widerspiegeln und niedrigere magnetische Suszeptibilität zeigen.Das Magnetit-Ilmenit Geothermometer ergab Temperaturen von ca. 730°C für Oxidpaare des Frühstadiums. Die Sauerstoff Fugazität liegt um eine bis drei Größenordnungen über der univarianten Reaktionskurve Annit-Sanidin-Magnetit (ASM), und dasfSO2/fH2S Verhältnis der wässrigen Schwefelkomplexe bei ca. 1.0. Dieses Frühstadium korrespondiert mit der Kristallisation von Horblende und Plagioklas im Magma in größerer Tiefe. Ab ca. 700°C erfolgt die Kristallisation von Biotit, Alkalifeldspat und Quarz bis etwa 600°C, wobeifO2 durch die ASM Mineralassoziation gepuffert wird. Dieses zweite Stadium wird als Oxyexsolution Prozeß beschrieben. Unter 600°C erfolgte eine Reduktion durch Assimilation von kohlenstoffreichem Material vor allem im südlichen Teil des Komplexes. Oxidpaare dieses Stadiums belegen, daßfO2 um etwa vier Größenordnungen unterhalb des ASM Puffers liegt, undfSO2/fH2S ist 10–8 bei 550°C. Die dramatische Änderung in der Zusammensetzung der Schwefelkomplexe in den Lösungen wird als der Hauptfaktor für die Bildung der Erzmineralisationen angesehen.


With 5 Figures  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号