首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   29篇
  国内免费   3篇
测绘学   8篇
大气科学   25篇
地球物理   84篇
地质学   102篇
海洋学   35篇
天文学   31篇
综合类   4篇
自然地理   57篇
  2023年   7篇
  2022年   3篇
  2021年   10篇
  2020年   14篇
  2019年   24篇
  2018年   19篇
  2017年   11篇
  2016年   21篇
  2015年   10篇
  2014年   13篇
  2013年   18篇
  2012年   16篇
  2011年   22篇
  2010年   16篇
  2009年   18篇
  2008年   23篇
  2007年   18篇
  2006年   11篇
  2005年   9篇
  2004年   9篇
  2003年   10篇
  2002年   13篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
171.
172.
Dye-tracing methods are utilized in an area of southwestern Missouri, USA, in order to evaluate factors influencing groundwater flow in the karst lithology. Four new dye traces were conducted in the Burlington Limestone formation of the surficial Springfield Plateau aquifer. Dye traces were conducted with two large sinkholes with mapped caves as their drainage base, one with fluorescein and one with rhodamine-WT. Two other traces, both using fluorescein dye, were performed where dye was introduced into a groundwater-level monitoring well and an exploratory borehole. Results of these four traces indicate that structural geologic control—as expressed by joints, fractures, faults, and photolineaments—does not account solely for the observed dye-trace results. The available data suggest that significant influence on groundwater movement is exerted by bedding planes within the low dip-angle limestone formation or by lithologic variability within the formation (such as silt- or clay-rich layers that have not yet been clearly identified). Average linear tracer velocities from each of the four traces indicate groundwater movement is primarily through conduits that flow slower than open channel surface waters in the region, but significantly faster than typical groundwater flow through porous media.  相似文献   
173.
174.
Gully rehabilitation can contribute to catchment management by stabilizing erosion and reducing downstream sediment yields, yet the globally observed responses are variable. Developing the technical basis for gully rehabilitation and establishing guidelines for application requires studies that evaluate individual rehabilitation measures in specific environments. An eight-year field experiment was undertaken to evaluate sediment yield and vegetation responses to several gully rehabilitation measures. The rehabilitation measures aimed to reduce surface runoff into gully head cuts, trap sediment on gully floors and increase vegetation cover on gully walls and floors. The study occurred in a savanna rangeland in northeast Australia. Two gullies were subject to treatments while four gullies were monitored as untreated controls. A runoff diversion structure reduced headcut erosion from 4.3 to 1.2 m2 yr−1. Small porous check dams and cattle exclusion reduced gully total sediment yields by more than 80%, equivalent to a reduction of 0.3 to 2.4 t ha−1 yr−1, but only at catchment areas less than 10 ha. Fine sediment yields (silt and clay) were reduced by 7 and 19% from the two treated gullies, respectively. The porous check dam deposits contained a lower percentage of the fine fraction than the parent soil. Significant regeneration of gully floor vegetation occurred, associated with trapping of organic litter and fine sediment. Increases in vegetation cover and biomass were comprised of native perennial grasses, trees and shrubs. In variable climates, long-term gully rehabilitation will progress during wetter periods, and regress during droughts. Understanding linkages between rehabilitation measures, their hydrologic, hydraulic and vegetation effects and gully sediment yields is important to defining the conditions for their success.  相似文献   
175.
Bacterial pathogens in coastal sediments may pose a health risk to users of beaches. Although recent work shows that beach sands harbor both indicator bacteria and potential pathogens, it is neither known how deep within beach sands the organisms may persist nor if they may be exposed during natural physical processes. In this study, sand cores of approximately 100 cm depth were collected at three sites across the beach face in Kitty Hawk, North Carolina, before, during, and after large waves from an offshore hurricane. The presence of DNA from the fecal indicator bacterium Enterococci was detected in subsamples at different depths within the cores by PCR amplification. Erosion and accretion of beach sand at the three sites were also determined for each sampling day. The results indicate that ocean beach sands with persisting enterococci signals could be exposed and redistributed when wind, waves, and currents cause beach erosion or accretion.  相似文献   
176.
Multidisciplinary, litho-, bio- and amino-stratigraphical investigations of the infills of buried channels on the coast of eastern Essex have a direct bearing on the differentiation of MIS 11 and MIS 9 in continental records. New data are presented from Shoeburyness, where a deeply incised channel filled with interglacial sediment can be directly related to the terrace stratigraphy of the River Thames. Fossil assemblages confirm that the interglacial beds began accumulating in a freshwater environment, which became transformed into a dynamic estuary as relative sea-levels rose. Pollen data confirm that this occurred early in the interglacial when mixed oak forest was becoming established.The geological context of the sediments indicates that they post-date the Anglian glaciation, yet pre-date the Barling Gravel terrace aggradation, which has been ascribed to MIS 8. Amino acid racemisation data based on Bithynia opercula further constrain the age to the Hoxnian (=MIS 11) or to MIS 9. An MIS 9 attribution is favoured because (i) AAR data suggest that the sequence post-dates the interglacial channel-fill at Clacton, which is widely ascribed to the Hoxnian; (ii) the bivalve Corbicula occurred early within the interglacial (unlike its late appearance during the Hoxnian); and (iii) the sequence includes evidence for a marine transgression that occurred earlier in the interglacial cycle than it did at local Hoxnian sites.Plant macrofossil remains suggest that the early part of the Shoeburyness interglacial was associated with warmer-than-present summer temperatures. This is in keeping with inferences from sites at Barling, Cudmore Grove and Purfleet, which are also attributed to MIS 9. All three sites are similar in terms of their palaeo-vegetation and inferred relative sea-level histories and provide an emerging picture of this temperate episode in southern Britain.  相似文献   
177.
The climate of the United States Northern Great Plains region is highly variable. Modelling of agriculture in this region and similar locations depends on the availability and quality of satellite and ground data for agro-climate variables. We evaluated tropical rainfall measuring mission (TRMM) multi-satellite preparation analysis (TMPA) precipitation, atmospheric infrared sounder (AIRS) surface air temperature, and AIRS relative air humidity (RH). A significant bias was found within the temperature and RH products and no bias but an insufficient rain event detection skill in the precipitation product (probability of detection ~0.3). A linear correction of the temperature product removed the bias as well as lowered the root mean square deviation (RMSD). The bias-corrections for RH led to increased RMSD or worse correlation. For precipitation, the correlation between the satellite product and ground data improved if cumulative precipitation or only precipitation during the growing season was used.  相似文献   
178.
An understanding of surface and subsurface water contributions to streamflow is essential for accurate predictions of water supply from mountain watersheds that often serve as water towers for downstream communities. As such, this study used the end‐member mixing analysis technique to investigate source water contributions and hydrologic flow paths of the 264 km2 Boulder Creek Watershed, which drains the Colorado Front Range, USA. Four conservative hydrochemical tracers were used to describe this watershed as a 3 end‐member system, and tracer concentration reconstruction suggested that the application of end‐member mixing analysis was robust. On average from 2009 to 2011, snowmelt and rainwater from the subalpine zone and groundwater sampled from the upper montane zone contributed 54%, 22%, and 24% of the annual streamflow, respectively. These values demonstrate increased rainwater and decreased snow water contributions to streamflow relative to area‐weighted mean values derived from previous work at the headwater scale. Young water (2.3 ± 0.8 months) fractions of streamflow decreased from 18–22% in the alpine catchment to 8–10% in the lower elevation catchments and the watershed outlet with implications for subsurface storage and hydrological connectivity. These results contribute to a process‐based understanding of the seasonal source water composition of a mesoscale watershed that can be used to extrapolate headwater streamflow generation predictions to larger spatial scales.  相似文献   
179.
Abstract

Collaborative governance applied to environmental issues is becoming more common, and evaluation of such efforts can provide useful information for multiple audiences. However, due to a variety of challenges, collaborative governance practitioners rarely evaluate the outcomes of collaboration and their contributions to these efforts. With these challenges in mind, the William D. Ruckelshaus Center designed an evaluation framework that can meet multiple parties’ objectives, be integrated into practitioners’ existing services, and balance flexibility and practicality with rigor and replicability. The Center conducted a pilot of this framework on a collaborative watershed management effort in southeastern Washington State, where the Center had previously assisted with organizational development. The resulting evaluation highlights a variety of social, knowledge-based, and economic outcomes for the collaborative, as well as lessons for practitioners and evaluators of collaborative governance. We suggest that this methodology can be useful for practitioners interested in evaluating similar collaborative efforts.  相似文献   
180.
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号