首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   8篇
  国内免费   2篇
测绘学   1篇
大气科学   16篇
地球物理   28篇
地质学   56篇
海洋学   8篇
天文学   14篇
综合类   1篇
自然地理   11篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   9篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   9篇
  2012年   9篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2003年   3篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1981年   2篇
  1977年   2篇
  1976年   2篇
  1975年   6篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1914年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
71.
Nevado del Huila, a glacier-covered volcano in the South of Colombia’s Cordillera Central, had not experienced any historical eruptions before 2007. In 2007 and 2008, the volcano erupted with phreatic and phreatomagmatic events which produced lahars with flow volumes of up to about 300 million m3 causing severe damage to infrastructure and loss of lives. The magnitude of these lahars and the prevailing potential for similar or even larger events, poses significant hazards to local people and makes appropriate modeling a real challenge. In this study, we analyze the recent lahars to better understand the main processes and then model possible scenarios for future events. We used lahar inundation depths, travel duration, and flow deposits to constrain the dimensions of the 2007 event and applied LAHARZ and FLO-2D for lahar modeling. Measured hydrographs, geophone seismic sensor data and calculated peak discharges served as input data for the reconstruction of flow hydrographs and for calibration of the models. For model validation, results were compared with field data collected along the Páez and Simbola Rivers. Based on the results of the 2007 lahar simulation, we modeled lahar scenarios with volumes between 300 million and 1 billion m3. The approach presented here represents a feasible solution for modeling high-magnitude flows like lahars and allows an assessment of potential future events and related consequences for population centers downstream of Nevado del Huila.  相似文献   
72.
73.
74.
The Transfiguration Cu–Pb–Zn–Ag deposit, enclosed within reduced grey sandstone, is associated with continental red beds of the Lower Silurian Robitaille Formation in the Quebec Appalachians, Canada. The Robitaille Formation rests unconformably on foliated Cambro-Ordovician rocks. The unconformity is locally cut by barite veins. The basal unit of the Robitaille Formation comprises green wacke and pebble conglomerate, which locally contain calcite nodules. The latter have microstructures characteristic of alpha-type calcretes, such as “floating” fabrics, calcite-filled fractures (crystallaria) and circumgranular cracks. Massive, grey sandstone overlies the basal green wacke and pebble conglomerate unit, which is overlain, in turn, by red, fine-grained sandstone. Mineralisation occurred underneath the red sandstone unit, chiefly in the grey sandstone unit, as disseminated and veinlet sulphides. Chalcopyrite, the most abundant Cu sulphide, replaced early pyrite. Calcrete, disseminated carbonate and vein carbonate have stable isotope ratios varying from −7.5‰ to −1.1‰ δ13C and from 14.7‰ to 21.3‰ δ18O. The negative δ13C values indicate the oxidation of organic matter in a continental environment. Sulphur isotope ratios for pyrite, chalcopyrite and galena vary from −19‰ to 25‰ δ34S, as measured on mineral concentrates by a conventional SO2 technique. Laser-assisted microanalyses (by fluorination) of S isotopes in pyrite show an analogous range in δ34S values, from −21‰ to 25‰. Negative and positive δ34S values are compatible with bacterial sulphate reduction (BSR) in systems open and closed with respect to sulphate. We interpret similarly high δ34S values for sulphide concentrates (25.1‰) and for vein barite (26.2‰) to result from rapid and complete thermochemical reduction of pore-water sulphate. Two early to late diagenetic stages of mineralisation best explain the origin of the Transfiguration deposit. The first stage was characterised by the ponding of groundwater over the Taconian unconformity, recorded by calcrete and early pyrite formation via BSR in grey sandstone. Early pyrite contains up to 2 wt.% Pb, which is consistent with Pb fixation by sulphate-reducing bacteria. The second stage (II) is defined by the replacement of early pyrite by chalcopyrite, as well as by sulphide precipitation via either BSR or thermochemical sulphate reduction (TSR) in grey sandstone. This event resulted from the synsedimentary fault-controlled percolation and mixing of (1) an oxidising, sulphate-bearing cupriferous fluid migrating per descensum from the red-bed sequence and (2) a hydrocarbon-bearing fluid migrating per ascensum from the Cambro-Ordovician basement. Mixing between the two fluids led to sulphate reduction, causing Cu sulphide precipitation. The positive correlation between Cu and Fe3+/Fe2+ bulk rock values suggests that Fe acted as a redox agent during sulphate reduction. Stage II diagenetic fluid migration is tentatively attributed to the Late Silurian Salinic extensional event.  相似文献   
75.
Bulk chemical analyses for Pt and Pd in marine Fe–Mn nodules and crusts from different provenances are presented, together with a wide range of elements. Platinum contents vary from 70–328 ppb, whereas Pd contents extend from 0.6–4.7 ppb only. Bromine and Pb show strong positive correlations with Pt. Lead is remarkably enriched in Fe–Mn precipitates over seawater, but Br is a conservative‐type element in seawater and shows no enrichment in Fe–Mn precipitates. Hence, the Pt–Br–Pb element association combines two elements, Br and Pb, of extremely contrasting enrichment factors in Fe–Mn precipitates.  相似文献   
76.
The post-Mesoproterozoic tectonometamorphic history of the Musgrave Province, central Australia, has previously been solely attributed to intracontinental compressional deformation during the 580 -520 Ma Petermann Orogeny. However, our new structurally controlled multi-mineral geochronology results,from two north-trending transects, indicate protracted reactivation of the Australian continental interior over ca. 715 million years. The earliest events are identified in the hinterland of the orogen along the western transect. The first tectonothermal event, at ca. 715 Ma, is indicated by40 Ar/39 Ar muscovite and U e Pb titanite ages. Another previously unrecognised tectonometamorphic event is dated at ca. 630 Ma by Ue Pb analyses of metamorphic zircon rims. This event was followed by continuous cooling and exhumation of the hinterland and core of the orogen along numerous faults, including the Woodroffe Thrust,from ca. 625 Ma to 565 Ma as indicated by muscovite, biotite, and hornblende40 Ar/39 Ar cooling ages. We therefore propose that the Petermann Orogeny commenced as early as ca. 630 Ma. Along the eastern transect,40 Ar/39 Ar muscovite and zircon(Ue Th)/He data indicate exhumation of the foreland fold and thrust system to shallow crustal levels between ca. 550 Ma and 520 Ma, while the core of the orogen was undergoing exhumation to mid-crustal levels and cooling below 600-660℃. Subsequent cooling to 150 -220℃ of the core of the orogen occurred between ca. 480 Ma and 400 Ma(zircon [Ue Th]/He data)during reactivation of the Woodroffe Thrust, coincident with the 450 -300 Ma Alice Springs Orogeny.Exhumation of the footwall of the Woodroffe Thrust to shallow depths occurred at ca. 200 Ma. More recent tectonic activity is also evident as on the 21 May, 2016(Sydney date), a magnitude 6.1 earthquake occurred, and the resolved focal mechanism indicates that compressive stress and exhumation along the Woodroffe Thrust is continuing to the present day. Overall, these results demonstrate repeated amagmatic reactivation of the continental interior of Australia for ca. 715 million years, including at least 600 million years of reactivation along the Woodroffe Thrust alone. Estimated cooling rates agree with previously reported rates and suggest slow cooling of 0.9 -7.0℃/Ma in the core of the Petermann Orogen between ca. 570 Ma and 400 Ma. The long-lived, amagmatic, intracontinental reactivation of central Australia is a remarkable example of stress transmission, strain localization and cratonization-hindering processes that highlights the complexity of Continental Tectonics with regards to the rigid-plate paradigm of Plate Tectonics.  相似文献   
77.
Sediment from Tanner Basin, located at the outer continental shelf off southern California, was analyzed for photosynthetic pigments and their derivatives, namely carotenes and chlorins. Samples of the sediment were also exposed to raised temperatures (65°, 100°, 150°C) for various periods of time (1 week, 1 month, 2 months). Analysis of the heat-treated sediment revealed the presence of α-ionene and 2,6-dimethylnaphthalene, thermal-degradation products of β-carotene. Chlorins were converted to nickel porphyrins of both DPEP and etio series. Possible mechanisms and geochemical significance of these transformations are presented.  相似文献   
78.
The Ethiopian continental flood basalt (CFB) province (∼30 Ma, > 3 × 105 km3) was formed as the result of the impingement of the Afar mantle plume beneath the Ethiopian lithosphere. This province includes major sequences of rhyolitic ignimbrites generally found on top of the flood basalt sequence. Their volume is estimated to be at least 6 × 104km3, which represents 20% of that of the trap basalts. Their phenocryst assemblage (alkali feldspar, quartz, aegyrine-augite, ilmenite ± Ti-magnetite, richterite, and eckermanite) suggests temperatures in the range of 740 to 900°C. Four units were recognized in the field (Wegel Tena, Jima, Lima Limo, and Debre Birhan areas), each with its own geochemical specificity. Zr/Nb ratios remain constant between basalt and rhyolite in each area, and rhyolites associated with high-Ti or low-Ti basalts are, respectively, enriched or depleted in titanium. Their trace element and isotope (Sr, Nd, O) signatures (high 143Nd/144Nd and low 87Sr/86Sr ratios, compared to those of rhyolites from other CFB provinces) are clearly different from those of typical crustal melts and indicate that the Ethiopian rhyolites are among the most isotopically primitive rhyolites. Their major and trace element patterns suggest that they are likely to be derived from fractional crystallization of basaltic magmas similar in composition to the exposed flood basalts with only limited crustal contribution. Since Ethiopian high-Ti basalts have been shown to form from melting of a mantle plume, it is likely that Ethiopian ignimbrites, at least those that are Ti-rich, also incorporated material from the deep mantle.Rb-Sr isochrons on whole rocks and mineral separates (30.1 ± 0.4 Ma for Wegel Tena and 30.5 ± 0.4 Ma for Jima ignimbrites) show that most of the silicic volcanism occurred within < 2 Ma during the Oligocene. Ignimbritic eruptions resumed in the Miocene during two episodes dated at 15.4 ± 0.2 Ma and 8.0 ± 0.2 Ma for the Debre Birhan area. The Rb-Sr isochron ages of ignimbrites (both Oligocene and Miocene rhyolites) are indistinguishable within uncertainties from the 40Ar/39Ar ages of the underlying flood basalts. The Oligocene ignimbrites and the underlying trap basalts are synchronous with a shift in the oxygen composition of foraminifera recorded in Indian and Atlantic Ocean cores. The temporal coincidence of Ethiopian Oligocene volcanism, which released immense volumes of S (> 1.4 × 1015 mol) and Cl (6.4 × 1015 mol) into the atmosphere over a short time span, with the global cooling event at 30.3 Ma suggests that this volcanism might have accelerated the climate change that was already underway.  相似文献   
79.
The complementary relationship between actual and potential evaporation provides evaporation (i.e. evapotranspiration) estimates from minimal data. Some versions that require a land surface temperature instead of a humidity measurement could potentially be used with routine remotely sensed surface temperature data. A comparison of alternative complementary approaches, including those that require land surface temperatures, was made at small (10–30 min) time scales with point measurements spatially, using data from the FIFE, CASES, SGP, and Sahel field experiments. The advection-aridity version and a related version based on the Penman and the Priestley–Taylor equations performed the best overall. One of the four versions that incorporated land surface temperature performed fairly well. The complementary approach appears to remain viable, especially in remote sensing applications with sparse data.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号