首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   12篇
  国内免费   3篇
测绘学   4篇
大气科学   12篇
地球物理   51篇
地质学   58篇
海洋学   17篇
天文学   26篇
自然地理   19篇
  2020年   3篇
  2019年   4篇
  2018年   14篇
  2017年   7篇
  2016年   7篇
  2015年   1篇
  2014年   6篇
  2013年   6篇
  2012年   11篇
  2011年   8篇
  2010年   8篇
  2009年   9篇
  2008年   10篇
  2007年   2篇
  2006年   11篇
  2005年   10篇
  2004年   14篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   8篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有187条查询结果,搜索用时 921 毫秒
181.
182.
The transfer of sediment through a highly regulated large fluvial system (lower Ebro River) was analysed during two consecutive floods by means of sediment sampling. Suspended sediment and bedload transport were measured upstream and downstream of large reservoirs. The dams substantially altered flood timing, particularly the peaks, which were advanced downstream from the dams for flood control purposes. The suspended sediment yield upstream from the dams was 1 700 000 tonnes, which represented nearly 99 per cent of the total solid yield. The mean concentrations were close to 0·5 g l?1. The sediment yield downstream from the dams was an order of magnitude lower (173 000 tonnes), showing a mean concentration of 0·05 g l?1. The dams captured up to 95 per cent of the fine sediment carried in suspension in the river channel, preventing it from reaching the lowermost reaches of the river and the delta plain. Total bedload transport upstream from the dams was estimated to be about 25 000 tonnes, only 1·5 per cent of the total load. The median bedload rate was 100 gms?1. Below the dams, the river carried 178 000 tonnes, around 51 per cent of the total load, at a mean rate of 250 g ms?1. The results of sediment transport upstream and downstream from the large dams illustrate the magnitude of the sediment deficit in the lower Ebro River. The river mobilized a total of 350 000 tonnes in the downstream reaches, which were not replaced by sediment from upstream. Therefore, sediment was necessarily entrained from the riverbed and channel banks, causing a mean incision of 33 mm over the 27 km long study reach, altogether a significant step towards the long‐term degradation of the lower Ebro River. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
183.
184.
Sumaco Volcano is located in the rear-arc of Ecuador and produces phonolitic alkaline lavas hosting a unique assemblage of minerals including haüyne and titanaugite. The most mafic lavas are picrobasalts that contain titanaugite as the primary mineral phase; the most evolved tephri-phonolite lavas contain titanaugite?+?anorthoclase?+?haüyne. Titanaugite forms at middle to deep crustal pressures, whereas haüyne is only stable at shallow depths in highly oxidizing conditions. The Sumaco mineral assemblages and geochemistry indicate that fractionation of the titanaugite- and haüyne-bearing assemblage took place over a range of pressures from 5 to 25 kbar (14–75 km), with at least 50% of differentiation taking place at shallow crustal levels. Minerals record multiple cycles of recharge and mixing accompanied by an increase in fO2 and sulfur concentration during differentiation. Mantle-like Sr and Nd isotope values (87Sr/86Sr = 0.70406–0.70423; 143Nd/144Nd = 0.512880–0.512913) indicate minimal crustal assimilation. Sumaco’s unique geochemical composition is not observed in the nearby volcanoes Antisana, Pan de Azucar or El Reventador suggesting that its unique magma source is confined to this volcano. The high temperature and sulfate-saturated conditions at shallow depths suggest that magma ascends rapidly to a shallow reservoir where the majority of crystallization and recharge takes place prior to eruption. An important conclusion of this research is that Sumaco does not represent typical rear-arc subduction processes, and caution should be used when using Sumaco as an end-member to evaluate across-arc processes in the Northern Volcanic Zone.  相似文献   
185.
Rockfalls and rock avalanches are a recurrent process in high mountain areas like the Mont Blanc massif. These processes are surveyed due to the hazard they present for infrastructure and alpinists. While rockfalls and rock avalanches have been documented for the last 150 years, we know very little about their frequency since the Last Glacial Maximum (LGM). In order to improve our understanding, it is imperative to date them on a longer timescale. A pilot campaign using Terrestrial Cosmogenic Nuclide (TCN) dating of five samples was carried out in 2006 at the Aiguille du Midi (3842 m a.s.l.). In 2011, a larger scale study (20 samples) was carried out in five other test sites in the Mont Blanc massif. This paper presents the exposure ages of the 2011 TCN study as well as the updated exposure ages of the 2006 study using newer TCN dating parameters. Most of these exposure ages lie within the Holocene but three ages are Pleistocene (59.87?±?6.10 ka for the oldest). A comparison of these ages with air temperature and glacier cover proxies explored the possible relationship between the most active rockfall periods and the warmest periods of the Holocene: two clusters of exposure ages have been detected, corresponding to the Middle Holocene (8.2–4.2 ka) and the Roman Warm Period (c. 2 ka) climate periods. Some recent rockfalls have also been dated (<?0.56 ka).  相似文献   
186.
S. Bishop  R. Egli 《Icarus》2011,212(2):960-361
Approximately 2.8 Myr before the present our planet was subjected to the debris of a supernova explosion. The terrestrial proxy for this event was the discovery of live atoms of 60Fe in a deep-sea ferromanganese crust. The signature for this supernova event should also reside in magnetite (Fe3O4) microfossils produced by magnetotactic bacteria extant at the time of the Earth-supernova interaction, provided the bacteria preferentially uptake iron from fine-grained iron oxides and ferric hydroxides. Using estimates for the terrestrial supernova 60Fe flux, combined with our empirically derived microfossil concentrations in a deep-sea drill core, we deduce a conservative estimate of the 60Fe fraction as 60Fe/Fe ≈ 3.6 × 10−15. This value sits comfortably within the sensitivity limit of present accelerator mass spectrometry capabilities. The implication is that a biogenic signature of this cosmic event is detectable in the Earth’s fossil record.  相似文献   
187.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号