首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2848篇
  免费   76篇
  国内免费   57篇
测绘学   283篇
大气科学   273篇
地球物理   518篇
地质学   1296篇
海洋学   131篇
天文学   365篇
综合类   55篇
自然地理   60篇
  2023年   17篇
  2022年   54篇
  2021年   61篇
  2020年   64篇
  2019年   67篇
  2018年   253篇
  2017年   237篇
  2016年   227篇
  2015年   135篇
  2014年   199篇
  2013年   261篇
  2012年   161篇
  2011年   154篇
  2010年   137篇
  2009年   135篇
  2008年   124篇
  2007年   75篇
  2006年   67篇
  2005年   48篇
  2004年   41篇
  2003年   36篇
  2002年   24篇
  2001年   20篇
  2000年   31篇
  1999年   19篇
  1998年   16篇
  1997年   21篇
  1996年   9篇
  1995年   9篇
  1994年   18篇
  1993年   17篇
  1992年   7篇
  1991年   26篇
  1990年   21篇
  1989年   16篇
  1988年   13篇
  1987年   23篇
  1986年   14篇
  1985年   16篇
  1984年   15篇
  1983年   6篇
  1982年   7篇
  1980年   6篇
  1979年   8篇
  1975年   6篇
  1974年   12篇
  1973年   5篇
  1972年   8篇
  1971年   5篇
  1969年   5篇
排序方式: 共有2981条查询结果,搜索用时 31 毫秒
861.
Integrated hydrometeorological investigations are not frequently available at a regional scale over a longer time period, especially near the terminus of Indian Himalayan glaciers. An integrated approach to the collection of hydrological data has major advantages for understanding the runoff generation mechanisms at basin scale, particularly when coupled with meteorological observations. The current study involves time series analysis of hydrometeorological records collected near the terminus of the Chorabari Glacier, for four consecutive ablation seasons(June-Sept.) 2009-2012. The analysis shows that variation in rainfall was higher(c_v= 0.9) at the same elevation over proximal sites, while the intensity of extreme rainfall events was 121-160 mm/d. The diurnal temperature range(DTR) has a tendency to reduce over the ablation season because of the onset of the Indian Summer Monsoon(ISM) and then further increases during the ISM withdrawal indicating humid-temperate conditions. The peak discharge(Qpeak) was found to be higher during July and August. Snow and glacier melt contributed 76% of the total suspended sediment transport during peak ISM months(July and August) reflecting seasonal evolution of the hydrologic conduits. The results indicate that Karakoram and western Himalayan glaciers produce comparatively low sediment yield compared to central Himalayan glaciers. The hydrological variations are depicted through flow duration curves(FDC) for meltwater discharge and sediment load. The flow corresponding to Q_(50), Q_(75), and Q_(90)(where Qx is the discharge that is exceeded x percent of the time referred to as % dependability) are 4.2, 3.7, and 2.8 m~3/s; and the corresponding dependability for suspended sediment loads(SSLs) are 409.0, 266.0, and 157.2 t/d, respectively. The daily SSL and discharge(Q) from 2009 to 2012 were used to develop a sediment rating curve(SSL = 39.55 × Q~(1.588). R~2 = 0.8).Multiple regressions are used to determine the impacts of meteorological parameters on glacier melt.The meteorological conditions, hydrological characteristics, and suspended sediment delivery for the Chorabari Glacier provide insight on meltwater generation processes and sediment transport patterns during the ISM season.  相似文献   
862.
On 25th April, 2015 a hazardous earthquake of moment magnitude 7.9 occurred in Nepal. Accelerographs were used to record the Nepal earthquake which is installed in the Kumaon region in the Himalayan state of Uttrakhand. The distance of the recorded stations in the Kumaon region from the epicenter of the earthquake is about 420–515 km. Modified semi-empirical technique of modeling finite faults has been used in this paper to simulate strong earthquake at these stations. Source parameters of the Nepal aftershock have been also calculated using the Brune model in the present study which are used in the modeling of the Nepal main shock. The obtained value of the seismic moment and stress drop is 8.26 × 1025 dyn cm and 10.48 bar, respectively, for the aftershock from the Brune model .The simulated earthquake time series were compared with the observed records of the earthquake. The comparison of full waveform and its response spectra has been made to finalize the rupture parameters and its location. The rupture of the earthquake was propagated in the NE–SW direction from the hypocenter with the rupture velocity 3.0 km/s from a distance of 80 km from Kathmandu in NW direction at a depth of 12 km as per compared results.  相似文献   
863.
Crop residue burning and imbalanced use of chemical fertilizers in intensive cereal–cereal rotations are present ecological threats in any agro‐ecosystem of the world. Therefore, identification of best suitable agricultural practices can be a feasible option. The present experiment was initiated in 2013 and consisted of four residue levels (0, 2, 4, and 6 Mg ha?1) and five potassium (K) levels (0, 50, 100, 150% recommended dose of K and 50%RDK+K solubilizing bacteria, KSB). Crop residue (CR) and K management significantly improve crop and soil quality associated parameters. Among the treatments, maximum increase in crop growth, physiological parameters, grain yield, quality aspects, and water productivity are recorded with the application of 4–6 Mg ha?1 CR. Application of 50%RDK+KSB also significantly increases crop and soil related parameters. Soil quality indicators (bulk density, pH, electrical conductivity, and available micronutrients) do not vary significantly with CR and K management. Change in soil organic carbon status, soil enzymes, and potassium‐solubilizing bacterial count are significantly increased with 4–6 Mg ha?1 CR and application of 50%RDK+KSB, and this is in accordance with correlation study carried out. Therefore, it is concluded that CR retention (4–6 Mg ha?1) and reduction of inorganic K fertilizer by 50% and inoculation of KSB enhance the soil quality indicators and thereby improve crop growth, physiological parameters, grain yield, and quality aspects along with water productivity under zero till maize–wheat rotation.  相似文献   
864.
A finite difference implicit scheme is presented in this paper for solution of the shallow water equations in one dimensional (1D) form. The present model has many advantages like, handling of discontinuous and complex bed topography, satisfying C-property (preservation of motionless water surface over a wet or dry bed) and capability of handling large value of temporal step etc. Another very important feature of the present model is that, no special treatment of the source vector of the governing equations is required here to deal with very less water depth. To investigate the performance of the present model in diverse situations, it is used to replicate four different problems of known analytical solution, and the model is found to be quite capable for varied situations.  相似文献   
865.
The design and detailing of gusset plate connections greatly influence the seismic performance of a special concentrically braced frame (SCBF). Recently, a balanced design approach has been proposed in order to develop significant inelastic deformation from multiple yield mechanisms and to delay the failure of connections of SCBF system. Although extensive studies have been conducted on the corner gusset plate connections of SCBFs, research on the detailing of mid‐span beam gusset plates is rather limited. This study aims at investigating the required free length for the detailing of the mid‐span gusset plates with different brace slenderness ratios. A nonlinear finite element analysis has been conducted for a braced frame with 4 different values of linear clearance in the mid‐span gusset plates and 2 values of brace slenderness ratios. In all simulation models, the corner gusset plates have been designed using balanced design approach and detailed using an elliptical clearance of 8 times the gusset plate thickness. An experimental study has also been conducted on 2 gusset plate sub‐assemblages having similar brace slenderness ratio but with 2 different values of linear clearance in the middle gusset plates. The lateral drift capacity corresponding to the brace fracture and the level of damage are found to be dependent on the detailing of the gusset plates. Based on the results of numerical and experimental studies, the required free length has been recommended for the detailing of middle gusset plates of SCBFs of different brace slenderness ratios.  相似文献   
866.
This study used gridded daily maximum temperature data (1°?×?1°) for 1951–2014 period to analyze the trend in monthly extreme warm days (ExWD) and changes in its probability distribution in each grid. It also analyzed the trend in spatial spread of annual ExWD over the study period at four exceedance levels and further related the number of ExWDs with cereal crop productivity of India. Extreme warm days have increased throughout India but were statistically significant in 42% grids. The increase was consistent over all the months in north-eastern region, southern plateau and both the coastal plains. It also increased significantly over north-western and central India during April to June summer period. The probability distribution of ExWD also changed significantly in many grids, especially in southern plateau and both the coastal plains. The changes indicated increased frequency in the existing levels of extremes and new occurrences of higher frequency of extremes. The analysis of land area affected by different levels of extremes indicated significant increase, with the rate being highest for higher extremes. In terms of extreme warm day temperatures, the study identified southern plateau, east and west coast plains, and north-eastern India as highly vulnerable. Using copula probability model, study showed that increase in ExWD from 20 to 60% may increase the probability of 5% or more yield loss from 17 to 53% for Kharif cereals, 11 to 43% for Rabi cereals and 19 to 63% for wheat crop. The results may be used for devising zone specific adaptation strategies.  相似文献   
867.
Vegetation is known to influence the hydrological state variables, suction \( \left( \psi \right) \) and volumetric water content (\( \theta_{w} \)) of soil. In addition, vegetation induces heterogeneity in the soil porous structure and consequently the relative permeability (\( k_{r} \)) of water under unsaturated conditions. The indirect method of utilising the soil water characteristic curve (SWCC) is commonly adopted for the determination of \( k_{r} \). In such cases, it is essential to address the stochastic behaviour of SWCC, in order to conduct a robust analysis on the \( k_{r} \) of vegetative cover. The main aim of this study is to address the uncertainties associated with \( k_{r} \), using probabilistic analysis, for vegetative covers (i.e., grass and tree species) with bare cover as control treatment. We propose two approaches to accomplish the aforesaid objective. The univariate suction approach predicts the probability distribution functions of \( {\text{k}}_{\text{r}} \), on the basis of identified best probability distribution of suction. The bivariate suction and water content approach deals with the bivariate modelling of the water content and suction (SWCC), in order to capture the randomness in the permeability curves, due to presence of vegetation. For this purpose, the dependence structure of \( \psi \) and \( \theta_{w} \) is established via copula theory, and the \( k_{r} \) curves are predicted with respect to varying levels of \( \psi - \theta_{w} \) correlation. The results showed that the \( k_{r} \) of vegetative covers is substantially lower than that in bare covers. The reduction in \( k_{r} \) with drying is more in tree cover than grassed cover, since tree roots induce higher levels of suction. Moreover, the air entry value of the soil depends on the magnitude of \( \psi - \theta_{w} \) correlation, which in turn, is influenced by the type of vegetation in the soil. \( k_{r} \) is found to be highly uncertain in the desaturation zone of the relative permeability curve. The stochastic behaviour of \( k_{r} \) is found to be most significant in tree covers. Finally, a simplified case study is also presented in order to demonstrate the impact of the uncertainty in \( k_{r} \), on the stability of vegetates slopes. With an increment in the parameter \( \alpha \), factor of safety (FS) is found to decrease. The trend of FS is reverse of this with parameter \( n \). Overall FS is found to vary around 4–5%, for both bare and vegetative slopes.  相似文献   
868.
During the occurrence of earthquake, the shear wave propagates in the rocks present inside/at the Earth’s crust. The propagation of shear wave may lead to the progression of punch present inside the rock medium. As a result of this, substantial stress accumulated at the vicinity of propagating punch inside rock medium which significantly affects the stability of various geological and human-made structure and, hence, may cause failure of structure. Therefore, the analysis of stress concentration at the vicinity of punch moving due to shear wave propagation has become prominent in the area of seismology. In the present paper, an analytical perspective has been employed to discuss the influence of velocity of moving punch associated with the propagation of shear wave on developed dynamic stress concentration (DSC) in three types of pre-stressed vertical transversely isotropic (VTI) poroelastic media viz. granite (an igneous rock); sandstone (a sedimentary rock); and marble (a metamorphic rock). The closed form expression of DSC for the force of constant intensity has been derived with the aid of Weiner-Hopf technique along with Galilean and two-sided Fourier integral transformations. The noticeable influence of different affecting parameters (viz. velocity of moving punch associated with the shear wave propagation, horizontal compressive/tensile initial stresses, vertical compressive/tensile initial stress, porosity, and anisotropy parameter) on dynamic stress concentration has also been reported. Numerical computation and graphical illustrations have been carried out for the aforementioned three different types of porous rocks to investigate the profound impact of affecting parameters on DSC. Moreover, some noteworthy peculiarities have also been derived from the obtained expression of dynamic stress concentration.  相似文献   
869.
We review changes in groundwater chemistry as precursory signs for earthquakes. In particular, we discuss pH, total dissolved solids (TDS), electrical conductivity, and dissolved gases in relation to their significance for earthquake prediction or forecasting. These parameters are widely believed to vary in response to seismic and pre-seismic activity. However, the same parameters also vary in response to non-seismic processes. The inability to reliably distinguish between changes caused by seismic or pre-seismic activities from changes caused by non-seismic activities has impeded progress in earthquake science. Short-term earthquake prediction is unlikely to be achieved, however, by pH, TDS, electrical conductivity, and dissolved gas measurements alone. On the other hand, the production of free hydroxyl radicals (?OH), subsequent reactions such as formation of H2O2 and oxidation of As(III) to As(V) in groundwater, have distinctive precursory characteristics. This study deviates from the prevailing mechanical mantra. It addresses earthquake-related non-seismic mechanisms, but focused on the stress-induced electrification of rocks, the generation of positive hole charge carriers and their long-distance propagation through the rock column, plus on electrochemical processes at the rock-water interface.  相似文献   
870.
Assessment of the impact of changes in climate and land use and land cover (LULC) on ecosystem services (ES) is important for planning regional-scale strategies for sustainability and restoration of ES. The Upper Narmada River Basin (UNRB) in peninsular India has undergone rapid LULC change due to recent agricultural expansion. The impact of future climate and LULC change on ES in the UNRB is quantified and mapped using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST 3.3.0) tool. Our results show that water yield is projected to increase under climate change (about 43% for representative concentration pathway 4.5 for 2031–2040), whereas it is projected to decrease under the LULC change scenario. Sediment export is projected to increase (by 54.53%) under LULC change for 2031–2040. Under the combined effect of climate and LULC change, both water yield and sediment export are expected to increase. Climate change has a greater impact on projected water yield than LULC change, whereas LULC has greater impact on sediment export. Spatial analysis suggests a similar trend of variation in relative difference (RD) of ES in adjacent sub-basins. The quantified changes in ES provisioning will benefit future land management, particularly for operation of the Rani Avanti Bai Sagar Reservoir downstream of the UNRB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号