首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   4篇
  国内免费   1篇
测绘学   3篇
地球物理   5篇
地质学   25篇
海洋学   3篇
天文学   2篇
自然地理   1篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  1996年   1篇
  1991年   1篇
  1982年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
11.
In this paper, we present an original methodology for recovering boundary conditions and hydraulic parameters in an aquifer domain. Boundary data are identified from the knowledge of over-specified boundary data on another part of the boundary. Then parameters, here wells’ positions and fluxes, are recovered by the use of the reciprocity principle (Andrieux and Ben Abda, Mech Res Commun 20:415–420, 1993; Andrieux and Ben Abda, Inverse Probl 12:553–564, 1996). The boundary recovering method is based on the minimization of an energy-like error functional (Andrieux et al., Inverse Probl 22:115–133; Baranger and Andrieux, 2010).  相似文献   
12.
Sustainable management of groundwater resources has now become an obligation,especially in arid and semi-arid regions given the socio-economic importance of this resource.The optimization in zoning for groundwater exploitation helps in planning and managing groundwater supply works such as boreholes and wells in the catchment.The objective of this study is to use remote sensing and GIS-based Analytical Hierarchy Process(AHP)techniques to evaluate the groundwater potential of Wadi Saida Watershed.Spatial analysis such as geostatistics was also used to validate results and ensure more accuracy.Through the GIS tools and remote sensing technique,earth observation data were converted into thematic layers such as lineament density,geology,drainage density,slope,land use and rainfall,which were combined to delineate groundwater potential zones.Based on their respective impact on groundwater potential,the AHP approach was adopted to assign weights on multi-influencing factors.These results will enable decision-makers to optimize hydrogeological exploration in large-scale catchment areas and map areas.According to the results,the southern part of the Wadi Saida Watershed is characterized as a higher groundwater potential area,where 32%of the total surface area falls in the excellent and good class of groundwater potential.The validation process revealed a 71%agreement between the estimated and actual yield of the existing boreholes in the study area.  相似文献   
13.
Soil losses and siltation of the hydrological system (watershed–dam) of K’sob were obtained using direct and indirect methods. The Wadi K’sob watershed of 1,484 km2, average slope of 0.14, and average elevation of 1,060 m is located in a semiarid climate. The average annual rainfall is 341 mm and the mean annual water discharge is 0.89 m3/s. Data from the Medjez gauging station located 6 km upstream of the dam, are the daily liquid flow and instantaneous concentrations of suspended sediments. Over a time period from 1973 to 2010, the relationship between water and sediment discharges is quantified by the equation: Q s?=?5.6 Q 1.31. Thus, in view of the availability data on a daily scale, the assessment of soil erodibility of the K’sob watershed was used to estimate specific soil losses of 203 t?km?2?year?1or 301,000 t eroded annually from the K’sob basin. The bathymetric measurements of the sediment volumes deposited in the K’sob dam, has quantified the annual siltation of 0.8 hm3, corresponding to an average erodibility of the K’sob watershed of 809 t?km?2?year?1. However, when adding the volume of sediment removed by the dredging operation and de-silting by the valves during heavy floods, the value of soil losses is 2,780 t?km?2?year?1. The indirect assessment of soil erodibility of the basin was obtained by applying two models: the quantitative geomorphological analysis (QGA) and PISA model (prediction of silting in the artificial reservoirs, in Italian: Previsioni dell’Interimento nei Serbatoi Artificiali) using physical and climatic factors in the watershed. The obtained results by QGA method underestimate specific soil losses of 524 t?km?2?year?1. The PISA model gives a value of 2,915 t?km?2?year?1, which is close to the value obtained by bathymetric measurements. This study concludes that PISA model is most suitable to estimate soil loss and siltation of the K’sob hydrological system.  相似文献   
14.
Yemen is a semi-arid country with very limited water resources. Sana’a Basin is located in the central part of Yemen and is the major source of water for drinking and irrigation. High abstraction rates in Sana’a Basin rising from 21.1 million (M) m3 in 1972 to 227.7?Mm3 in 2006, have led to a major decline in water levels and deterioration in groundwater quality. Effective management of groundwater resources in Sana’a Basin can be aided by modelling. FEFLOW was used to build a groundwater flow model for the basin and the model was calibrated under transient conditions for the period 1972–2006. The water balance for transient conditions of the Sana’a Basin in 2006 indicated that the total annual inflow was 116.9?Mm3, and the total annual outflow was 245.8?Mm3. Three scenarios for potential groundwater extraction for the period 2006–2020 are presented. The first represents the present status based on the 2006 extraction rates without introducing any management measures. The second is based on maximum domestic, agricultural and industrial consumption of water resources. The third simulates the effect of water-resource augmentation, i.e. the increase of groundwater recharge, and maximizes sustainability by reducing water consumption. Identified areas of the basin require prompt management action.  相似文献   
15.
The El Khairat aquifer is an important groundwater aquiferous system, which is considered a major source for drinking and irrigation water in Enfidha in Tunisian Sahel. The analysis of groundwater chemical characteristics provides much important information useful in water resources management. Assessing the water quality status for special use is the main objective of any water monitoring studies. An attempt has been made for the first time in this region to appreciate the quality and/or the suitability of shallow and deep groundwater for drinking and irrigation. In order to attend this objective, a total of 35 representative water samples were collected during February 2007 from both boreholes (17) and wells (18); and analyzed for the major cations (sodium, calcium, magnesium and potassium) and anions (chloride, sulphate, bicarbonate, and nitrate) along with various physical and chemical parameters (temperature, pH, total dissolved salts, and electrical conductivity). Based on the physico-chemical analyses, irrigation quality parameters like sodium absorption ratio (SAR), residual sodium carbonate (RSC), percentage of sodium (Na%), and permeability index (PI) were calculated. In addition to this, iso-concentration maps were constructed using the geographic information system to delineate spatial variation of qualitative parameters of groundwater samples. The correlation of the analytical data has been attempted by plotting different graphical representations such as Piper, Wilcox, and US Salinity Laboratory for the classification of water. The suitability of the water from the groundwater sources for drinking and irrigation purposes was evaluated by comparing the values of different water quality parameters with World Health Organization guideline values for drinking water. A preliminary hydrochemical characterization shows that most of the groundwater samples fall in the field of calcium–magnesium–chloride–sulphate type of water. Majority of the samples are not suitable for drinking purposes and far from drinking water standards. The high EC value and the percentage of Na in most of the groundwater render it unsuitable for irrigation. Wilcox classification suggested that around 50% of both deep and shallow groundwater samples are unsuitable for irrigation. According to the US Salinity Classification, most of the groundwater is unsuitable for irrigation unless special measures are adopted.  相似文献   
16.
The pollution of soils by xenobiotic organic substances such as crude oil constitutes major environmental risks, which are still badly evaluated. The environmental risks are caused by the direct contamination of the surrounding areas or by an effect on the living organisms in the soils, thus acting directly on man via the food chains. For these reasons, it is essential to study the effects of these pollutants in the soil. The general objective of the work was to better characterize the mechanical behaviour of sites polluted by crude oil in the short and medium terms (case of oilfield of Sidi El Itayem, Sfax, Tunisia under the supervision of the Franco-Tunisian Oil Company). The process consists of determining and comparing the physicochemical, mechanical and geotechnical characteristics of virgin soil and soil artificially polluted by crude oil according to various pollution rates reaching 15% of the weight of virgin soil. This process made it possible to generate scientific knowledge and data, which could allow the prediction of the effects of the latter in interaction with the soil.  相似文献   
17.
During the Hapex-Sahel international investigation, portable radiometers (Barringer and Cimel) were used to study, in the optical domain, the relationship between soil mineralogical and granulometric compositions and radiometric indices: redness index, colour index and texture index. The results show that the granulometric distribution and the mineralogical composition have both important influence on these indices.In this Sahelian area, for soils having more than 1% of hematite, the redness index presents a high correlation with hematite content. For soils with less than 1% of hematite, the redness index depends on the size of the particles and their distribution at the surface.For eolian sandy and ferricrust soils, the colour and texture indices present good correlations, respectively, with iron oxide and kaolinite content. No such correlation is observed for ferruginous soils because of the complex interactions existing between iron oxides, kaolinite and the size of particles.  相似文献   
18.
It is thought that satellite thermal infrared (IR) images can aid to the detection of precipitation, an interesting possibility due to the existence of geostationary satellites with thermal IR sensors which would enable a good spatial and temporal tracking of rain and storms. In this letter, we explore the application of multiscale/multifractal techniques in the design of new methods for the assessment and tracking of pluviometry. We first identify the main streamlines by a singularity analysis of the wavelet projections of the IR record. From the streamlines, we derive a proxy scalar image that represents the result of pure horizontal advection. From the comparison of original and proxy we localize the places at which horizontal advection fails, which we identify with convection places. We illustrate our methodology with thermal IR images from Metosat acquired during heavy tropical rainfall, and compare the results with some data from the Tropical Rainfall Measuring Mission satellite.  相似文献   
19.
The morphological evolution of shallows seabed has undergone great changes over the past 95 years. These changes have not only led to the decreases of water volume but also to the spatial variability of sediments. However, the distribution and the movement of marine sediments from underwater beaches are very complex due to the combination of several factors such as hydrodynamic factors (e.g., tidal currents ±?34 cm, swells and currents driven by the prevailing northeast wind), and entropic factors (e.g., soil occupation and protective installation of structures as breakwater, groynes, retaining wall). This situation can disrupt the sedimentary regime in the Boumerdes area. In order to better understand the hydrodynamic processes, the recognition of sedimentary processes, the modalities, and erosion mechanisms of this zone are necessary. Thus, the study of long-term underwater morphological evolution by comparing between the bathymetric surveys of different years, between 1922 and 2017, is required to study the feasibility of coastal engineering projects. The seabed bathymetric evolution of this coastal fringe from erosion point of view was appreciated. It is based on a geographic information system (GIS), which allows to carry out a digital depth model interpolated by kriging method.  相似文献   
20.
This paper attempts an overview of the application of remote sensing to groundwater studies. Its objective is to define the role of the geological features in the underground hydrodynamic in the aquifer system of the Chott El Gharbi Basin (Algerian western high plains) and identify a link between the fracturing and the meteoric water supply of this deep aquifer. The methodology followed consists to study the fracturing map of studied area which is obtained after Landsat 7 ETM+ processing images. It is based on structural lineaments mapping. The obtained map has been validated by geophysical results and geological map. Statistical analysis of the lineaments network shows the presence of about 537 lineaments divided into four families oriented according to the following directions NE-SW, NW-SE, N-S, and E-W. The lineament analysis of the studied basin provides important information on subsurface fractures that may control the circulation and storage of groundwater. These fractures have an undeniable hydrogeological interest because of their size, a priori favorable for the aquifers recharge in the region. The probable link between the Chott El Gharbi implementation and the presence of mega fractures which some of them correspond actually to Wadis is confirmed. The correlation between the productivity of high debit drillings and the closest lineament confirms that these lineaments are surface traces of regional discontinuities and act as main groundwater flow paths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号