The Southeast Basin of France is the thickest onshore French sedimentary basin which contains locally as much as 10 km of Mesozoic-Cenozoic sediment. Basin development occurred in several stages between late Carboniferous and late Cretaceous times. Partial tectonic inversion took place during two compressive events, the so-called ‘Pyrenean’ and ‘Alpine’ phases of late Cretaceous-early Tertiary and late Tertiary ages respectively. They are separated by an intervening stretching event of Oligocene age, which further south resulted in the opening of the western Mediterranean oceanic basin. As a result of this complex tectonic history, structural traps were difficult to image on the seismic data shot during the first phase of exploration prior to 1980. Oil and gas natural seeps, and shows in several wells, indicate that some petroleum systems are, or have been active, at least in some places.The present erosional western margin of the basin is more or less superimposed on the initial Triassic-Jurassic margin. Margin subsidence and Tertiary inversion are discussed using regional sections on which the polyphase history of the entire basin is well shown. These sections are located on three major segments where the Mesozoic margin is either partly preserved (Ardèche), or has been partly inverted in late Tertiary times (Vercors-Chartreuse), or has been completely inverted in early Tertiary times (Corbières-eastern Pyrenees). 1-D ‘Genex’ basin modelling on the Ardèche segment, and 2-D ‘Thrustpack’ structural-maturity modelling in the Vercors-Chartreuse segment are used to further assess the remaining petroleum plays. 相似文献
Ion microprobe analysis of magnetites from the Adirondack Mountains, NY, yields oxygen isotope ratios with spatial resolution of 2–8 m and precision in the range of 1 (1 sigma). These analyses represent 11 orders of magnitude reduction in sample size compared to conventional analyses on this material and they are the first report of routinely reproducible precision in the 1 per mil range for analysis of 18O at this scale. High precision micro-analyses of this sort will permit wide-ranging new applications in stable isotope geochemistry. The analyzed magnetites form nearly spherical grains in a calcite matrix with diopside and monticellite. Textures are characteristic of granulite facies marbles and show no evidence for retrograde recrystallization of magnetite. Magnetites are near to Fe3O4 in composition, and optically and chemically homogeneous. A combination of ion probe plus conventional BrF5 analysis shows that individual grains are homogeneous with 18O=8.9±1 SMOW from the core to near the rim of 0.1–1.2 mm diameter grains. Depth profiling into crystal growth faces of magnetites shows that rims are 9 depleted in 18O. These low 18O values increase in smooth gradients across the outer 10 m of magnetite rims in contact with calcite. These are the sharpest intracrystalline gradients measured to date in geological materials. This discovery is confirmed by bulk analysis of 150–350 m diameter magnetites which average 1.2 lower in 18O than coarse magnetites due to low 18O rims. Conventional analysis of coexisting calcite yields °18O=18.19, suggesting that bulk 18O (Cc-Mt)=9.3 and yielding an apparent equilibration temperature of 525° C, over 200° C below the temperature of regional metamorphism. Consideration of experimental diffusion data and grain size distribution for magnetite and calcite suggests two contrasting cooling histories. The data for oxygen in calcite under hydrothermal conditions at high P(H2O) indicates that diffusion is faster in magnetite and modelling of the low 18O rims on magnetite would suggest that the Adirondacks experienced slow cooling after Grenville metamorphism, followed by a brief period of rapid cooling, possibly related to uplift. Conversely, the data for calcite at low P(H2O) show slower oxygen diffusion than in magnetite. Modelling based on these data is consistent with geochronology that shows slow cooling through the blocking temperature of both minerals, suggesting that the low 18O rims form by exchange with late, low temperature fluids similar to those that infiltrated the rock to serpentinize monticellite and which infiltrated adjacent anorthosite to form late calcite veinlets. In either case, the ion microprobe results indicate that two distinct events are recorded in the post-metamorphic exchange history of these magnetites. Recognition of these events is only possible through microanalysis and has important implications for geothermometry. 相似文献
Abstract A case study of the degradation of weather radar data by the accretion of wet snow on a radar dome is presented as a precautionary example to radar users. During the ERICA field program in 1989, accumulated precipitation on the radome at Halifax, Nova Scotia, attenuated signal in a distinctive, pie‐shaped sector on the upwind side of the radar. 相似文献
One-dimensional turbulence (ODT) is a single-column simulation in which vertical motions are represented by an unsteady advective process, rather than their customary representation by a diffusive process. No space or time averaging of mesh-resolved motions is invoked. Molecular-transport scales can be resolved in ODT simulations of laboratory-scale flows, but this resolution of these scales is prohibitively expensive in ODT simulations of the atmospheric boundary layer (ABL), except possibly in small subregions of a non-uniform mesh.Here, two methods for ODT simulation of the ABL on uniform meshes are described and applied to the GABLS (GEWEX Atmospheric Boundary Layer Study; GEWEX is the Global Energy and Water Cycle Experiment) stable boundary-layer intercomparison case. One method involves resolution of the roughness scale using a fixed eddy viscosity to represent subgrid motions. The other method, which is implemented at lower spatial resolution, involves a variable eddy viscosity determined by the local mesh-resolved flow, as in multi-dimensional large-eddy simulation (LES). When run at typical LES resolution, it reproduces some of the key high-resolution results, but its fidelity is lower in some important respects. It is concluded that a more elaborate empirically based representation of the subgrid physics, closely analogous to closures currently employed in LES of the ABL, might improve its performance substantially, yielding a cost-effective ABL simulation tool. Prospects for further application of ODT to the ABL, including possible use of ODT as a near-surface subgrid closure framework for general circulation modeling, are assessed. 相似文献
Summary This paper determines the characteristic air mass types over the Carpathian Basin for the winter (December, January, and February)
and summer (June, July and August) months dependant on levels of the main air pollutants. Based on the ECMWF data set, daily
sea-level pressure fields analysed at 00 UTC were prepared for each air mass type (cluster) in order to relate sea-level pressure
patterns with the level of air pollutants in Szeged. The data comprise daily values of twelve meteorological and eight pollutant
parameters for the period 1997–2001. Objective definition of the characteristic air mass types is achieved by using the methods
of Factor Analysis and Cluster Analysis. According to the results, during the winter months five air mass types (clusters)
were detected based on higher concentrations of primary pollutants that occur with high irradiance and low wind speed. This
is the case when an anticyclone is found over the Carpathian Basin and over the region south of Hungary, influencing the weather
of the country. Low levels of pollutants occur when zonal currents exert influence over Hungary. During the summer months
anticyclones and anticyclone ridge situations are found over the Carpathian Basin. (During the prevalence of anticyclone ridge
situations, the Carpathian Basin is found at the edge of a high pressure centre.) As a result of high irradiance and very
low NO levels, secondary pollutants are highly enriched. 相似文献
A picrite lava (22 wt% MgO; 35 vol.% ol) along the western shore of the1.3–1.4 Ma Kahoolawe tholeiitic shield, Hawaii, contains small xenoliths of harzburgite, lherzolite, norite, and wehrlite. The various rock types have textures where either orthopyroxene, clinopyroxene, or plagioclase is in a poikilitic relationship with olivine. The Mg#s of the olivine, orthopyroxene, and clinopyroxene in this xenolith suite range between 86 and 82; spinel Mg#s range from 60 to 49, and plagioclase is An75–80. A 87Sr/86Sr ratio for one ol-norite xenolith is 0.70444. In comparison, the host picrite has olivine phenocrysts with an average Mg# of 86.2 (range 87.5–84.5), and a whole-rock 87Sr/86Sr ratio of 0.70426. Textural and isotopic information together with mineral compositions indicate that the xenoliths are related to Kahoolawe tholeiitic magmatism, but are not crystallization products of the magma represented by their host picrite. Rather, the xenoliths are crystalline products of earlier primitive liquids (FeO/MgO ranging 1 to 1.3) at 5–9 kbar in the cumulate environment of a magma reservoir or conduit system. The presence of ultramafic xenoliths in picrite but not in typical Kahoolawe tholeiitic lava (6–9 wt% MgO) is consistent with replenishment of reservoirs by dense Mg-rich magma emplaced beneath resident, less dense tholeiitic magma. Mg-rich magmas have proximity to reservoir cumulate zones and are therefore more likely than fractionated residual liquids to entrain fragments of cumulate rock. 相似文献
Variables related to urban park awareness are identified and methods for relaxing assumptions of perfect information in park use models are discussed. Park awareness is related to park characteristics (age and degree of development of the park), population characteristics (race, age, length of residence, recreation participation), and distance. Park attributes are stronger predictors of both park awareness and use than is distance. These findings parallel similar research on the cognitive aspects of shopping decisions. 相似文献
Identification of the distinctive circulation patterns of storminess on the Atlantic margin of Europe forms the main objective of this study; dealing with storm frequency, intensity and tracking. The climatology of the extratropical cyclones that affect this region has been examined for the period 1940–1998. Coastal meteorological data from Ireland to Spain have been linked to the cyclone history for the North Atlantic in the analysis of storm records for European coasts. The study examines the evolution in the occurrence of storms since the 1940s and also their relationship with the North Atlantic Oscillation (NAO). Results indicate a seasonal shift in the wind climate, with regionally more severe winters and calmer summers established. This pattern appears to be linked to a northward displacement in the main North Atlantic cyclone track.
An experiment with the ECHAM4 A-GCM at high resolution (T106) has also been used to model the effect of a greenhouse gases induced warming climate on the climatology of coastal storms in the region. The experiment consists of (1), a 30-year control time-slice representing present-day equivalent CO2 concentrations and (2), a 30-year perturbed period corresponding to a time when the radiative forcing has doubled in terms of equivalent CO2 concentrations. The boundary conditions have been obtained from an atmosphere-ocean coupled OA-GCM simulation at low horizontal resolution. An algorithm was developed to allow the identification of individual cyclone movements in selected coastal zones. For most of the northern part of the study region, covering Ireland and Scotland, results describe the establishment by ca. 2060 of a tendency for fewer but more intense storms.
The impacts of these changes in storminess for the vulnerability of European Atlantic coasts are considered. For low-lying, exposed and ‘soft’ sedimentary coasts, as in Ireland, these changes in storminess are likely to result in significant localised increases in coastal erosion. 相似文献