首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   2篇
  国内免费   3篇
测绘学   2篇
地球物理   11篇
地质学   41篇
海洋学   1篇
天文学   53篇
自然地理   2篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2010年   3篇
  2009年   7篇
  2008年   5篇
  2007年   9篇
  2006年   8篇
  2005年   4篇
  2004年   9篇
  2003年   4篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1970年   1篇
  1938年   1篇
  1933年   2篇
  1930年   5篇
  1926年   1篇
  1924年   2篇
  1923年   1篇
  1922年   1篇
  1921年   1篇
  1920年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
71.
72.
73.
We consider the dynamics of a protostellar disc in a binary system where the disc is misaligned with the orbital plane of the binary, with the aim of determining the observational consequences for such systems. The disc wobbles with a period approximately equal to half the orbital period of the binary and precesses on a longer time-scale. We determine the characteristic time-scale for realignment of the disc with the orbital plane as a result of dissipation. If the dissipation is determined by a simple isotropic viscosity then we find, in line with previous studies, that the alignment time-scale is of the order of the viscous evolution time-scale. However, for typical protostellar disc parameters, if the disc tilt exceeds the opening angle of the disc, then tidally induced shearing within the disc is transonic. In general, hydrodynamic instabilities associated with the internally driven shear result in extra dissipation that is expected to drastically reduce the alignment time-scale. For large disc tilts the alignment time-scale is then comparable with the precession time-scale, while for smaller tilt angles δ , the alignment time-scale varies as (sin δ )−1. We discuss the consequences of the wobbling, precession and rapid realignment for observations of protostellar jets and the implications for binary star formation mechanisms.  相似文献   
74.
Current physical science students and researchers are becoming ever more diverse in their learning needs and styles, in their ways of learning and indeed their scientific backgrounds in the subjects that they study. Current schools, colleges and Higher Education students are increasingly ‘digital natives’, connected 24/7 through mobile devices, generally goal‐orientated and responding well to digitally‐based activities and tasks. Whilst the structured nature of classrooms, traditional lectures and laboratory practicals obviously still dominate geoscience teaching, and core outdoor field trips and independent mapping/research are of paramount importance, more innovative complementary learning, teaching and research technologies are being developed by a wide variety of computer software developers, practitioners and educationalists.  相似文献   
75.
Precessing accretion discs have long been suggested as explanations for the long periods observed in a variety of X-ray binaries, most notably Her X-1/HZ Her. We show that an instability of the response of the disc to the radiation reaction force from the illumination by the central source can cause the disc to tilt out of the orbital plane and precess in something like the required manner. The rate of precession and disc tilt obtained for realistic values of system parameters compare favourably with the known body of data on X-ray binaries with long periods. We explore other possible types of behaviour than steadily precessing discs that might be observable in systems with somewhat different parameters. At high luminosities, the inner disc tilts through more than 90°, i.e., it rotates counter to the usual direction, which may explain the torque reversals in systems such as 4U 1626−67.  相似文献   
76.
Be stars are rapidly spinning B stars surrounded by an outflowing disc of gas in Keplerian rotation. Be star/X-ray binary systems contain a Be star and a neutron star. They are found to have non-zero eccentricities and there is evidence that some systems have a misalignment between the spin axis of the star and the spin axis of the binary orbit. The eccentricities in these systems are caused by a kick to the neutron star during the supernova that formed it. Such kicks would also give rise to misalignments. In this paper, we investigate the extent to which the same kick distribution can give rise to both the observed eccentricity distribution and the observed misalignments. We find that a Maxwellian distribution of velocity kicks with a low velocity dispersion,  σk≈ 15 km s−1  , is consistent with the observed eccentricity distribution but is hard to reconcile with the observed misalignments, typically   i ≥ 25°  . Alternatively, a higher velocity kick distribution,  σk= 265 km s−1  , is consistent with the observed misalignments but not with the observed eccentricities, unless post-supernova circularization of the binary orbits has taken place. We discuss briefly how this might be achieved.  相似文献   
77.
During the first and second Mercury flyby the MESSENGER spacecraft detected a dawn side double-current sheet inside the Hermean magnetosphere that was labeled the “double magnetopause” (Slavin, J.A. et al. [2008]. Science 321, 85). This double current sheet confines a region of decreased magnetic field that is referred to as Mercury’s “dayside boundary layer” (Anderson, M., Slavin, J., Horth, H. [2011]. Planet. Space Sci.). Up to the present day the double current sheet, the boundary layer and the key processes leading to their formation are not well understood. In order to advance the understanding of this region we have carried out self-consistent plasma simulations of the Hermean magnetosphere by means of the hybrid simulation code A.I.K.E.F. (Müller, J., Simon, S., Motschmann, U., Schüle, J., Glassmeier, K., Pringle, G.J. [2011]. Comput. Phys. Commun. 182, 946–966). Magnetic field and plasma results are in excellent agreement with the MESSENGER observations. In contrast to former speculations our results prove this double current sheet may exist in a pure solar wind hydrogen plasma, i.e. in the absence of any exospheric ions like sodium. Both currents are similar in orientation but the outer is stronger in intensity. While the outer current sheet can be considered the “classical” magnetopause, the inner current sheet between the magnetopause and Mercury’s surface reveals to be sustained by a diamagnetic current that originates from proton pressure gradients at Mercury’s inner magnetosphere. The pressure gradients in turn exist due to protons that are trapped on closed magnetic field lines and mirrored between north and south pole. Both, the dayside and nightside diamagnetic decreases that have been observed during the MESSENGER mission show to be direct consequences of this diamagnetic current that we label Mercury’s “boundary-layer-current“.  相似文献   
78.
79.
Variability of black hole accretion discs: the cool, thermal disc component   总被引:1,自引:0,他引:1  
We extend the model of King et al. for variability in black hole accretion discs by taking proper account of the thermal properties of the disc. Because the degree of variability in the King et al. model depends sensitively on the ratio of disc thickness to radius, H / R , it is important to follow the time dependence of the local disc structure as the variability proceeds. In common with previous authors, we develop a one-zone model for the local disc structure. We agree that radial heat advection plays an important role in determining the inner disc structure, and also find limit-cycle behaviour. When the stochastic magnetic dynamo model of King et al. is added to these models, we find similar variability behaviour to before.
We are now better placed to put physical constraints on model parameters. In particular, we find that in order to be consistent with the low degree of variability seen in the thermal disc component of black hole binaries, we need to limit the energy density of the poloidal field that can be produced by local dynamo cells in the disc to less than a few per cent of the energy density of the dynamo field within the disc itself.  相似文献   
80.
The Carboniferous northern Pennine Basin remains the type locality for the ‘block and basin’ tectonic framework model. It has been widely believed that during periods of tectonic extension, large low-density bodies within the basement permit buoyant blocks to resist isostatic subsidence. However, lithosphere-scale structural and geodynamic modelling experiments dispute this; suggesting instead that the formation of intra-basinal highs occurs prior to lithospheric extension. In northern UK, this tectonic framework is controlled by a combination of tectonic stress, isostasy and the buoyancy forces of low-density granite, lithospheric flexure and, importantly, the inherited structural framework. It is hoped that further study can lead to a greater appreciation of the interplay of structural and geodynamic process that control the ‘block and basin’ framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号