首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   41篇
  国内免费   7篇
测绘学   17篇
大气科学   92篇
地球物理   240篇
地质学   453篇
海洋学   61篇
天文学   103篇
综合类   4篇
自然地理   52篇
  2023年   4篇
  2022年   4篇
  2021年   18篇
  2020年   20篇
  2019年   17篇
  2018年   25篇
  2017年   35篇
  2016年   25篇
  2015年   40篇
  2014年   41篇
  2013年   61篇
  2012年   51篇
  2011年   60篇
  2010年   70篇
  2009年   57篇
  2008年   54篇
  2007年   46篇
  2006年   46篇
  2005年   51篇
  2004年   44篇
  2003年   31篇
  2002年   32篇
  2001年   22篇
  2000年   15篇
  1999年   9篇
  1998年   13篇
  1997年   12篇
  1996年   12篇
  1995年   15篇
  1994年   2篇
  1993年   13篇
  1992年   4篇
  1991年   4篇
  1990年   11篇
  1989年   6篇
  1988年   1篇
  1987年   12篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有1022条查询结果,搜索用时 15 毫秒
891.
Mantle petrology and mineralogy of the Thetford Mines Ophiolite Complex   总被引:4,自引:0,他引:4  
The Ordovician Thetford Mines ophiolite complex (TMOC) formed by boninite-fed seafloor-spreading, probably in a fore-arc environment. The mantle section is dominated by foliated harzburgite (≤ 5–6% clinopyroxene), cut by dunitic (± chromitite cores) and orthopyroxenitic veins and dykes. Contrasting structures, textures and mineral compositions allow us to subdivide the mantle. The granular-textured rocks of the Duck Lake Block (DLB) have two steeply-dipping foliations. The older foliation strikes NW, is sub-perpendicular to the Moho, and is interpreted to have resulted from upflow of the asthenosphere beneath the spreading ridge. This fabric is overprinted by a 2nd ductile foliation striking ENE, oriented sub-parallel to the Moho, which we interpreted as having formed by crust–mantle shear as the lithosphere migrated away from the spreading ridge. The DLB mantle has a limited range of spinel Cr# (100Cr / (Cr + Al) = 51–71). Comparison with experimentally determined residual spinel compositions (equilibrium melting) implies a maximum loss of 27–38% melt if the protolith had a fertile MORB mantle composition. However, interstitial-textured clinopyroxene may have high TiO2 (< 0.04wt.%) and Na2O (< 0.27wt.%), and some interstitial spinel has higher TiO2 (< 0.09wt.%), suggesting interaction with (or crystallization from) an “impregnating” melt. Interstitial tremolitic amphibole also indicates the passage of late hydrous fluids. The harzburgite in the Caribou Mountain Block (CMB) has a porphyroclastic texture, with a strong, locally mylonitic foliation striking roughly N–S, parallel to the orientation of seafloor-spreading related paleo-normal faults in the crust. These fabrics and textures imply a colder, lithospheric deformation, possibly related to tectonic denudation (oceanic core complex). This would explain problematic lava/mantle contacts, favour infiltration of seawater, serpentinization, and reduced fO2 conditions. The CMB mantle shows a wider range of mineral compositions than the DLB, with spinel Cr# (28–86) implying ≤ 15–45% of equilibrium melting. Locally higher TiO2 in spinel (< 0.05wt.%) and clinopyroxene (< 0.11wt.%), a local rimward decrease in spinel Cr#, clinopyroxene Cr#, and olivine Fo-content, and traces of interstitial amphibole, are attributed to the circulation of an evolved hydrous melt during peridotite deformation. This suggests that the lower limit to the extent of melting inferred for the CMB (15%), established on the basis of Al-rich spinel rims and neoblasts, is probably too low. On the other hand, the higher inferred degree of depletion of the CMB is probably unaffected by the metasomatic overprint and is a more robust conclusion.  相似文献   
892.
The EW-striking Variscan Mérens shear zone (MSZ), located on the southern border of the Aston dome (Pyrenees), corresponds to variously mylonitized gneisses and plutonic rocks that are studied using the Anisotropy of Magnetic Susceptibility (AMS) technique. The plutonic rocks form EW-striking bands with, from south to north, gabbro-diorites, quartz diorites and granodiorites. The MSZ underwent a mylonitic deformation with an intensity progressively increasing from the mafic to the more differentiated rocks. The foliations are EW to NW–SE striking and subvertical. A first set of lineations shows a moderate WNW plunge, with a dextral reverse kinematics. More recent subvertical lineations correspond to an uplift of the northern compartment. To the east, the MSZ was cut by a N120°E-striking late shear band, separating the MSZ from the Quérigut pluton. The different stages of mylonitization relate to Late Variscan dextral transpression. This regime allowed the ascent of magmas along tension gashes in the middle crust. We interpret the MSZ as a zone of magma transfer, which fed a pluton now eroded that was similar to the Quérigut and Millas plutons located to the east. We propose a model of emplacement of these plutons by successive pulses of magmas along en-échelon transfer zones similar to the MSZ.  相似文献   
893.
On 8–9 September 2002, an extreme rainfall event caused by a stationary mesoscale convective system (MCS) occurred in the Gard region, France. Distributed hydrologic and hydraulic modelling has been carried out to assess and compare the various sources of data collected operationally and during the post-event field surveys. Distributed hydrological modelling was performed with n-TOPMODELs and assessed for ungauged basins with the discharge estimates of the post-event surveys. A careful examination of the occurrence in time and space of the flash floods over the head watersheds indicates that flooding was controlled by the trajectory of the convective part of the MCS. Stationarity of the MCS over the Gardon watershed (1858 km2 at Remoulins) for 28 h was responsible for the exceptional magnitude of the flood at this scale. The flood dynamics were characterized by an extensive inundation of the Gardonnenque plain upstream of the Gardon Gorges resulting in a significant peak flow reduction downstream. One-dimensional unsteady-flow hydraulic modelling was found to be required to reproduce these dynamics. Hydraulic modelling also proved to be potentially useful for the critical analysis and extrapolation of operational discharge rating curves.  相似文献   
894.
Patterns of change in the structure of bacterial communities monitored by ribosomal intergenic spacer analysis (RISA) in oil contaminated sediments inhabited or not by the marine polychaete Nereis diversicolor were studied during 45 days under laboratory conditions. Results supported by principal component analysis showed a marked response of the bacterial communities to the oil contamination and to the presence of N. diversicolor. Phylogenetic affiliation of specific RISA bands showed that, in the contaminated sediments, the presence of the marine polychaetes favoured the development of bacteria which may play an active role in natural bioremediation processes of oil polluted environments.  相似文献   
895.
Nearly water-saturated argillite samples (initial water content near 3.4 wt%) were cored from an undisturbed area of an underground facility of the French Institute for Radioprotection and Nuclear Safety (IRSN), located at Tournemire (Aveyron, France). These samples were subjected to the following desiccation path: (a) A desaturation phase during which the samples were dried at ambient temperature conditions, relative humidity equal to 43% in average and (b) a heating phase during which the same samples were heated at four temperature levels from 70°C up to 105°C. During both phases, the low-frequency complex resistivity (0.18Hz–12 kHz) was recorded by a four-electrode device. The amplitude of the complex resistivity was extremely sensitive to water content change. At the end of the isotherm desaturation phase, it was multiplied by a factor of 3 to 5. During the heating phase, the resistivity increased by more than two orders of magnitude compared to the initial state. The percentage of Frequency Effect shows a low sensitivity to water content changes during the desaturation stage while it increased by two orders of magnitude during the heating phase. This result confirms that low-frequency spectral signature is extremely sensitive to textural changes (i.e., thermal-induced microcracking in this case) that occurred during heating. Moreover, the complex resistivity of the samples shows a strong anisotropy (a ratio of 10 between both amplitudes measured in the perpendicular directions). The classical Cole-Cole model cannot be used to fit the experimental data obtained in the heating phase. A generalized formulation of this model is required and was successfully applied to represent the complex resistivity data.  相似文献   
896.
Usu volcano (Hokkaido, Japan) is a dacitic volcano, known for its high production rate of lava domes and crypto-domes. It is thus a good target to study processes of volcanic dome evolution (upheaval and/or relaxation). We carried out repeated GPS and microgravity surveys on the three most recent domes of Mt. Usu (1910: Meiji Shinzan; 1943–1945: Showa-Shinzan and 1977–1982: Usu-Shinzan). The repeat period was 1 to 2 months and extended from October 1996 to June 1997. We also compare new data with results from former studies. More than 20 years after the start of Usu-Shinzan dome growth, there is still subsidence at a maximum rate of about 7 to 8 cm/year. The reasons for this subsidence are discussed. Repeated gravity surveys revealed an increase of gravity on the domes (about 60±10 microgal/year for Usu-Shinzan, about 15 microgal at Showa-Shinzan and 10 to 20 microgal for Meiji-shinzan); this gravity increase exceeds that expected due to subsidence. We discuss and interpret the excess gravity change in terms of a density increase in the edifice, caused by a combination of processes (contraction of the edifice, water level change, devesiculisation, cooling and magma intrusion). Quantification of these processes at Usu volcano may help to understand the processes of evolution at domes on other volcanoes such as Merapi (Indonesia), Unzen (Japan) or Montserrat (West Indies).  相似文献   
897.
The Aquitanian Coast (France) is a high-energy meso-macrotidal environment exhibiting a highly variable double sandbar system. The inner and the outer bar generally exhibit a bar and rip morphology and persistent crescentic patterns, respectively. In June 2007, an intense five-day field experiment was carried out at Biscarrosse Beach. A large array of sensors was deployed on a well-developed southward-oriented bar and rip morphology. Daily topographic surveys were carried out together with video imaging to investigate beach morphodynamic evolution. During the experiment, offshore significant wave height ranged from 0.5 to 3 m, with a persistent shore-normal angle. This paper identifies two types of behavior of an observed rip current: (1) for low-energy waves, the rip current is active only between low and mid tide with maximum mean rip current velocity reaching 0.8 m/s for an offshore significant wave height (Hs) lower than 1 m; (2) for high-energy waves (Hs≈ 2.5–3 m), the rip current was active over the whole tide cycle with the presence of persistent intense offshore-directed flows between mid and high tide. For both low and high-energy waves, very low-frequency pulsations (15–30 min) of the mean currents are observed on both feeder and rip channels.A persistent slow shoreward migration of the sandbar was observed during the experiment while no significant alongshore migration of the system was measured. Onshore migration during the high-energy waves can be explained by different sediment transport processes such as flow velocity skewness, wave asymmetry or bed ventilation. High-frequency local measurements of the bed evolution show the presence of significant (in the order of 10 cm) fluctuations (in the order of 1 h). These fluctuations, observed for both low- and high-energy waves, are thought to be ripples and megaripples, respectively and may play an important but still poorly understood role in the larger scale morphodynamics. The present dataset improves the knowledge of rip dynamics as well as the morphological response of strongly alongshore non-uniform meso-macrotidal beaches.  相似文献   
898.
Beaver dam analogs (BDAs) are a stream restoration technique that is rapidly gaining popularity in the western United States. These low-cost, stream-spanning structures, designed after natural beaver dams, are being installed to confer the ecologic, hydrologic, and geomorphic benefits of beaver dams in streams that are often too degraded to provide suitable beaver habitat. BDAs are intended to slow streamflow, reduce the erosive power of the stream, and promote aggradation, making them attractive restoration tools in incised channels. Despite increasing adoption of BDAs, few studies to date have monitored the impacts of BDAs on channel form. Here, we examine the geomorphic changes that occurred within the first year of restoration efforts in Wyoming using high-resolution visible light orthomosaics and elevation data collected with unoccupied aerial vehicles (UAVs). By leveraging the advantages of rapidly acquired images from UAV surveys with recent advancements in structure-from-motion photogrammetry, we constructed centimeter-scale digital elevation models (DEMs) of the restoration reach and an upstream control reach. Through DEM differencing, we identified areas of enhanced erosion and deposition near the BDAs, suggesting BDA installation initiated a unique geomorphic response in the channel. Both reaches were characterized by net erosion during the first year of restoration efforts. While erosion around the BDAs may seem counter to the long-term goal of BDA-induced aggradation, short-term net erosion is consistent with high precipitation during the study and with theoretical channel evolution models of beaver-related stream restoration that predict initial channel widening and erosion before net deposition. To better understand the impacts of BDAs on channel morphology and restoration efforts in the western United States, it is imperative that we consistently assess the effects of beaver-inspired restoration projects across a range of hydrologic and geomorphic settings and that we continue this monitoring in the future.  相似文献   
899.
Water science data are a valuable asset that both underpins the original research project and bolsters new research questions, particularly in view of the increasingly complex water issues facing Canada and the world. Whilst there is general support for making data more broadly accessible, and a number of water science journals and funding agencies have adopted policies that require researchers to share data in accordance with the findable, accessible, interoperable, reusable (FAIR) principles, there are still questions about effective management of data to protect their usefulness over time. Incorporating data management practices and standards at the outset of a water science research project will enable researchers to efficiently locate, analyse and use data throughout the project lifecycle, and will ensure the data maintain their value after the project has ended. Here, some common misconceptions about data management are highlighted, along with insights and practical advice to assist established and early career water science researchers as they integrate data management best practices and tools into their research. Freely available tools and training opportunities made available in Canada through Global Water Futures, The Gordon Foundation DataStream, the Digital Research Alliance of Canada Portage Network, Compute Canada, and university libraries, among others are compiled. These include webinars, training videos, and individual support for the water science community that together enable researchers to protect their data assets and meet the expectations of journals and funders. The perspectives shared here have been developed as part of the Global Water Futures programme's efforts to improve data management and promote the use of common data practices and standards in the context of water science in Canada. Ten best practices are proposed that may be broadly applicable to other disciplines in the natural sciences and can be adopted and adapted globally.  相似文献   
900.
Lagrangian approaches are well suited to transport in contrasted media but have been considered irrelevant when inversion is envisioned. The randomness of results for the same transport scenario adds to the rough evaluation by perturbation of the sensitivities, yielding an inaccurate search of parameters. It is shown here how a Time Domain Random Walk (TDRW) method can be inverted by deriving the sensitivities analytically. The calculations are very rapid and provide a precise evaluation of the descent directions followed by a Gauss–Newton optimizer. The method handles advection–dispersion + retention by matrix diffusion or sorption with first-order kinetics and proves its worth in all cases. Since analytical sensitivities are available, calculations are rigorous and allow discussing the inversion feasibility, the accuracy of the sought parameters, according to the predominant mechanism involved in the transport scenario.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号