首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   41篇
  国内免费   7篇
测绘学   17篇
大气科学   92篇
地球物理   240篇
地质学   453篇
海洋学   61篇
天文学   103篇
综合类   4篇
自然地理   53篇
  2023年   4篇
  2022年   4篇
  2021年   18篇
  2020年   20篇
  2019年   17篇
  2018年   25篇
  2017年   35篇
  2016年   25篇
  2015年   40篇
  2014年   41篇
  2013年   61篇
  2012年   51篇
  2011年   60篇
  2010年   70篇
  2009年   57篇
  2008年   54篇
  2007年   46篇
  2006年   46篇
  2005年   51篇
  2004年   44篇
  2003年   31篇
  2002年   32篇
  2001年   23篇
  2000年   15篇
  1999年   9篇
  1998年   13篇
  1997年   12篇
  1996年   12篇
  1995年   15篇
  1994年   2篇
  1993年   13篇
  1992年   4篇
  1991年   4篇
  1990年   11篇
  1989年   6篇
  1988年   1篇
  1987年   12篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有1023条查询结果,搜索用时 0 毫秒
21.
A dense seismic reflection survey with up to 250-m line-spacing has been conducted in a 15 × 15 km wide area offshore southwestern Taiwan where Bottom Simulating Reflector is highly concentrated and geochemical signals for the presence of gas hydrate are strong. A complex interplay between north–south trending thrust faults and northwest–southeast oblique ramps exists in this region, leading to the formation of 3 plunging anticlines arranged in a relay pattern. Landward in the slope basin, a north–south trending diapiric fold, accompanied by bright reflections and numerous diffractions on the seismic profiles, extends across the entire survey area. This fold is bounded to the west by a minor east-verging back-thrust and assumes a symmetric shape, except at the northern and southern edges of this area, where it actively overrides the anticlines along a west-verging thrust, forming a duplex structure. A clear BSR is observed along 67% of the acquired profiles. The BSR is almost continuous in the slope basin but poorly imaged near the crest of the anticlines. Local geothermal gradient values estimated from BSR sub-bottom depths are low along the western limb and crest of the anticlines ranging from 40 to 50 °C/km, increase toward 50–60 °C/km in the slope basin and 55–65 °C/km along the diapiric fold, and reach maximum values of 70 °C/km at the southern tip of the Good Weather Ridge. Furthermore, the local dips of BSR and sedimentary strata that crosscut the BSR at intersections of any 2 seismic profiles have been computed. The stratigraphic dips indicated a dominant east–west shortening in the study area, but strata near the crest of the plunging anticlines generally strike to southwest almost perpendicular to the direction of plate convergence. The intensity of the estimated bedding-guided fluid and gas flux into the hydrate stability zone is weaker than 2 in the slope basin and the south-central half of the diapiric fold, increases to 7 in the northern half of the diapiric fold and plunging anticlines, and reaches a maximum of 16 at the western frontal thrust system. Rapid sedimentation, active tectonics and fluid migration paths with significant dissolved gas content impact on the mechanism for BSR formation and gas hydrate accumulation. As we begin to integrate the results from these studies, we are able to outline the regional variations, and discuss the importance of structural controls in the mechanisms leading to the gas hydrate emplacements.  相似文献   
22.
23.
24.
In the framework of the planar and circular restricted three-body problem, we consider an asteroid that orbits the Sun in quasi-satellite motion with a planet. A quasi-satellite trajectory is a heliocentric orbit in co-orbital resonance with the planet, characterized by a nonzero eccentricity and a resonant angle that librates around zero. Likewise, in the rotating frame with the planet, it describes the same trajectory as the one of a retrograde satellite even though the planet acts as a perturbator. In the last few years, the discoveries of asteroids in this type of motion made the term “quasi-satellite” more and more present in the literature. However, some authors rather use the term “retrograde satellite” when referring to this kind of motion in the studies of the restricted problem in the rotating frame. In this paper, we intend to clarify the terminology to use, in order to bridge the gap between the perturbative co-orbital point of view and the more general approach in the rotating frame. Through a numerical exploration of the co-orbital phase space, we describe the quasi-satellite domain and highlight that it is not reachable by low eccentricities by averaging process. We will show that the quasi-satellite domain is effectively included in the domain of the retrograde satellites and neatly defined in terms of frequencies. Eventually, we highlight a remarkable high eccentric quasi-satellite orbit corresponding to a frozen ellipse in the heliocentric frame. We extend this result to the eccentric case (planet on an eccentric motion) and show that two families of frozen ellipses originate from this remarkable orbit.  相似文献   
25.
A low-dimensional model that describes both saturated and unsaturated flow processes in a single equation is presented. Subsurface flow processes in the groundwater, the vadose zone, and the capillary fringe are accounted for through the computation of aggregated hydrodynamic parameters that result from the integration of the governing flow equations from the bedrock to the land surface. The three-dimensional subsurface flow dynamics are thus described by a two-dimensional equation, allowing for a drastic reduction of model unknowns and simplification of the model parameterizations. This approach is compared with a full resolution of the Richards equation in different synthetic test cases. Because the model reduction stems from the vertical integration of the flow equations, the test cases all use different configurations of heterogeneity for vertical cross-sections of a soil-aquifer system. The low-dimensional flow model shows strong consistency with results from a complete resolution of the Richards equation for both the water table and fluxes. The proposed approach is therefore well suited to the accurate reproduction of complex subsurface flow processes.  相似文献   
26.
27.
GETEMME (Gravity, Einstein??s Theory, and Exploration of the Martian Moons?? Environment), a mission which is being proposed in ESA??s Cosmic Vision program, shall be launched for Mars on a Soyuz Fregat in 2020. The spacecraft will initially rendezvous with Phobos and Deimos in order to carry out a comprehensive mapping and characterization of the two satellites and to deploy passive Laser retro-reflectors on their surfaces. In the second stage of the mission, the spacecraft will be transferred into a lower 1500-km Mars orbit, to carry out routine Laser range measurements to the reflectors on Phobos and Deimos. Also, asynchronous two-way Laser ranging measurements between the spacecraft and stations of the ILRS (International Laser Ranging Service) on Earth are foreseen. An onboard accelerometer will ensure a high accuracy for the spacecraft orbit determination. The inversion of all range and accelerometer data will allow us to determine or improve dramatically on a host of dynamic parameters of the Martian satellite system. From the complex motion and rotation of Phobos and Deimos we will obtain clues on internal structures and the origins of the satellites. Also, crucial data on the time-varying gravity field of Mars related to climate variation and internal structure will be obtained. Ranging measurements will also be essential to improve on several parameters in fundamental physics, such as the Post-Newtonian parameter ?? as well as time-rate changes of the gravitational constant and the Lense-Thirring effect. Measurements by GETEMME will firmly embed Mars and its satellites into the Solar System reference frame.  相似文献   
28.
Geo‐composite cellular structures are an efficient technological solution for various applications in civil engineering. This type of structure is particularly well adapted to resisting rockfalls and can act as a defensive structure. However, the design of such structures is for the most part empirically based; this lack of research‐based design stagnates optimization and advanced development. In this paper, the mechanical behaviour of a geo‐composite cellular structure is investigated using a multi‐scale approach, from the individual cell made up of an assembly of rocky particles contained in a wire netting cage to the entire structure composed of a regular array of cells. Based on discrete modelling of both the cell and structure scales, a computational tool has been developed for design purposes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
29.
We constrain a three-dimensional thermomechanical model of Greenland ice sheet (GrIS) evolution from the Last Glacial Maximum (LGM, 21 ka BP) to the present-day using, primarily, observations of relative sea level (RSL) as well as field data on past ice extent. Our new model (Huy2) fits a majority of the observations and is characterised by a number of key features: (i) the ice sheet had an excess volume (relative to present) of 4.1 m ice-equivalent sea level at the LGM, which increased to reach a maximum value of 4.6 m at 16.5 ka BP; (ii) retreat from the continental shelf was not continuous around the entire margin, as there was a Younger Dryas readvance in some areas. The final episode of marine retreat was rapid and relatively late (c. 12 ka BP), leaving the ice sheet land based by 10 ka BP; (iii) in response to the Holocene Thermal Maximum (HTM) the ice margin retreated behind its present-day position by up to 80 km in the southwest, 20 km in the south and 80 km in a small area of the northeast. As a result of this retreat the modelled ice sheet reaches a minimum extent between 5 and 4 ka BP, which corresponds to a deficit volume (relative to present) of 0.17 m ice-equivalent sea level. Our results suggest that remaining discrepancies between the model and the observations are likely associated with non-Greenland ice load, differences between modelled and observed present-day ice elevation around the margin, lateral variations in Earth structure and/or the pattern of ice margin retreat.  相似文献   
30.
Natural analogues provide an approach to characterize and test the long‐term modelling of a repository performance. This article presents geochemical information about the alteration conditions of the Nopal I uranium deposit, Mexico, an analogue for the proposed Yucca Mountain radioactive waste repository. Mineralization and hydrothermal alteration of volcanic tuffs are contemporaneous, according to petrographic observations. Trace element geochemistry (U, Th, REE) provides evidence for local mobilization of uranium under oxidizing conditions and further precipitation under reducing conditions. O‐ and H‐isotope geochemistry of kaolinite, smectite, opal and calcite suggests that argillic alteration proceeded at shallow depth with meteoric water at 25–75 °C, a low‐temperature context, unusual for volcanic‐hosted uranium deposits. This temperature range is compatible with some post‐closure evolution models of the proposed Yucca Mountain repository.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号