首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   965篇
  免费   50篇
  国内免费   7篇
测绘学   17篇
大气科学   92篇
地球物理   240篇
地质学   453篇
海洋学   61篇
天文学   103篇
综合类   4篇
自然地理   52篇
  2023年   4篇
  2022年   4篇
  2021年   18篇
  2020年   20篇
  2019年   17篇
  2018年   25篇
  2017年   35篇
  2016年   25篇
  2015年   40篇
  2014年   41篇
  2013年   61篇
  2012年   51篇
  2011年   60篇
  2010年   70篇
  2009年   57篇
  2008年   54篇
  2007年   46篇
  2006年   46篇
  2005年   51篇
  2004年   44篇
  2003年   31篇
  2002年   32篇
  2001年   22篇
  2000年   15篇
  1999年   9篇
  1998年   13篇
  1997年   12篇
  1996年   12篇
  1995年   15篇
  1994年   2篇
  1993年   13篇
  1992年   4篇
  1991年   4篇
  1990年   11篇
  1989年   6篇
  1988年   1篇
  1987年   12篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有1022条查询结果,搜索用时 15 毫秒
91.
In situ monitoring of karst springs in Wallonia (southern Belgium)   总被引:1,自引:1,他引:0  
The implementation of the Water Framework Directive, as well as the forthcoming entry into force of other European water policies focusing on water resources, require a thorough reorganization of groundwater resources monitoring in most European countries. In Wallonia, monitoring programs were initiated in 2005 to control the quantitative and chemical statuses of groundwater bodies, as well as the effectiveness of management plans aimed at achieving environmental objectives. In karst aquifers, springs are preferential monitoring targets even if, as a result of the high heterogeneity of this type of aquifer, the interpretation of time series and spatial data remains a challenge. Since 2006, a “springs” monitoring network has been progressively set up in the southern part of Belgium. Currently, in situ measurements of discharge, temperature, conductivity, turbidity and fluorescence of water are conducted at nine karstic outlets in the Devonian and the Carboniferous limestone aquifers of Wallonia. The main objective of this ongoing research is to evaluate the suitability and the robustness of such standard measurements to discriminate anthropogenic impacts from natural variations, at both short- and long-term scales. Discharge and temperature data revealed being useful in the assessment of regional hydro-climatic trends. Groundwater proved to be a better natural filter for the assessment of long-term climatic changes than mathematical filtering of noisy surface signals. Investigations of such data at a European scale could therefore give additional insight into the impacts of climate change on groundwater resources. Conductivity, turbidity and fluorescence data characterize the particulate, mineral and organic health of water and a better understanding of their natural dynamics could help in the early detection of anthropogenic deviations. However, the current reproducibility of these measurements is too low to ascertain observed trends and fluctuations, and further research is still needed.  相似文献   
92.
93.
The weathering of mantle peridotite tectonically exposed to the atmosphere leads commonly to natural carbonation processes. Extensive cryptocrystalline magnesite veins and stock-work are widespread in the serpentinite sole of the New Caledonia ophiolite. Silica is systematically associated with magnesite. It is commonly admitted that Mg and Si are released during the laterization of overlying peridotites. Thus, the occurrence of these veins is generally attributed to a per descensum mechanism that involves the infiltration of meteoric waters enriched in dissolved atmospheric CO2. In this study, we investigate serpentinite carbonation processes, and related silicification, based on a detailed petrographic and crystal chemical study of serpentinites. The relationships between serpentine and alteration products are described using an original method for the analysis of micro-X-ray fluorescence images performed at the centimeter scale. Our investigations highlight a carbonation mechanism, together with precipitation of amorphous silica and sepiolite, based on a dissolution–precipitation process. In contrast with the per descensum Mg/Si-enrichment model that is mainly concentrated in rock fractures, dissolution–precipitation process is much more pervasive. Thus, although the texture of rocks remains relatively preserved, this process extends more widely into the rock and may represent a major part of total carbonation of the ophiolite.  相似文献   
94.
We present here a numerical modelling study of dislocations in perovskite CaTiO3. The dislocation core structures and properties are calculated through the Peierls–Nabarro model using the generalized stacking fault (GSF) results as a starting model. The GSF are determined from first-principles calculations using the VASP code. The dislocation properties such as collinear, planar core spreading and Peierls stresses are determined for the following slip systems: [100](010), [100](001), [010](100), [010](001), [001](100), [001](010), and All dislocations exhibit lattice friction, but glide appears to be easier for [100](010) and [010](100). [001](010) and [001](100) exhibit collinear dissociation. Comparing Peierls stresses among tausonite (SrTiO3), perovskite (CaTiO3) and MgSiO3 perovskite demonstrates the strong influence of orthorhombic distortions on lattice friction. However, and despite some quantitative differences, CaTiO3 appears to be a satisfactory analogue material for MgSiO3 perovskite as far as dislocation glide is concerned.  相似文献   
95.
Multiphase flow modelling is a major issue in the assessment of groundwater pollution. Three-phase flows are commonly governed by mathematical models that associate a pressure equation with two saturation equations. These equations involve a number of secondary variables that reflect the fluid behaviour in a porous medium. To improve the computational efficiency of multiphase flow simulators, several simplified reformulations of three-phase flow equations have been proposed. However, they require the construction of new secondary variables adapted to the reformulated flow equations. In this article, two different approaches are compared to quantify these variables. A numerical example is given for a typical fine sand.  相似文献   
96.
In adapting the prestack migration technique used in seismic imaging to the inversion of ground‐penetrating radar (GPR) from time‐ to depth‐sections, we show that the theoretical integral formulation of the inversion can be applied to electromagnetic problems, albeit with three assumptions. The first two assumptions concern the electromagnetic characteristics of the medium, primarily that the medium must be perfectly resistive and non‐dispersive, and the third concerns the antennae radiation pattern, which is taken to be 2D. The application of this adaptation of the inversion method is confirmed by migrating actual GPR measurements acquired on the test site of the Laboratoire Central des Ponts et Chaussées. The results show good agreement with the geometry of the structures in the medium and confirm that the possible departure from the assumption of a purely resistive medium has no visible effect on the information concerning the geometry of scattering and reflecting structures. The field experiments also show that prestack migration processing is sufficiently robust with regard to the assumption of a non‐dispersive medium. The assumption of a 2D antennae radiation pattern, however, produces artefacts that could be significant for laterally heterogeneous media. Nevertheless, where the medium is not highly laterally heterogeneous, the migration gives a clear image of the scattering potential due to the geometry of structural contrasts in the medium; the scatterers are well focused from diffraction hyperbolae and well localized. Spatial geometry has limited dimensional accuracy and positions are located with a maximum error equal to the minimum wavelength of the signal bandpass. Objects smaller than one wavelength can nevertheless be detected and well focused if their dielectric contrasts are sufficiently high, as in the case of iron or water in gneiss gravels. Furthermore, the suitability of multi‐offset protocols to estimate the electromagnetic propagating velocity and to decrease the non‐coherent noise level of measurements is confirmed. Our velocity estimation is based on the semblance calculation of multi‐offset migrated images, and we confirmed the relevance of this quantification method using numerical data. The signal‐to‐noise ratio is improved by summing multi‐offset results after the addition of random noise on measurements. Thus the adaptation of prestack migration to multi‐offset radar measurements significantly improves the resolution of the scattering potential of the medium. Limitations associated with the methods used here suggest that 3D algorithms should be applied to strongly laterally heterogeneous media and further studies concerning the waveform inversion are necessary to obtain information about the electric nature of the medium.  相似文献   
97.
Contamination levels and profiles of 7 polychlorinated-p-dioxins, 10 polychlorinated furans (PCDD/Fs) and 12 dioxin-like polychlorinated biphenyls (dl-PCBs) were investigated in juvenile European flounder (Platichthys flesus) captured in different nursery areas in the northeastern Atlantic coast across its geographical distribution range. The toxic equivalent concentrations (WHO-TEQfish) were also determined in order to evaluate which P. flesus population was more exposed to dioxin-like toxicity. Juveniles caught in the Sørfjord (Norway) showed the lowest WHO-TEQfish concentration (0.052 pg WHO-TEQfish g−1 wet weight) whereas the highest value was observed in fish from the Wadden Sea (The Netherlands; 0.291 pg WHO-TEQfish g−1 ww), mainly due to the greater contribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin, the most toxic congener. Nonetheless, when comparing the results with existent tissue residue-based toxicity benchmarks, no adverse effects resulting from PCDD/Fs and dl-PCBs are expected to occur in flounder from the studied systems.  相似文献   
98.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   
99.
This study investigates the effect of fine-scale clay drapes on tracer transport. A tracer test was performed in a sandbar deposit consisting of cross-bedded sandy units intercalated with many fine-scale clay drapes. The heterogeneous spatial distribution of the clay drapes causes a spatially variable hydraulic conductivity and sorption coefficient. A fluorescent tracer (sodium naphthionate) was injected in two injection wells and ground water was sampled and analyzed from five pumping wells. To determine (1) whether the fine-scale clay drapes have a significant effect on the measured concentrations and (2) whether application of multiple-point geostatistics can improve interpretation of tracer tests in media with complex geological heterogeneity, this tracer test is analyzed with a local three-dimensional ground-water flow and transport model in which fine-scale sedimentary heterogeneity is modeled using multiple-point geostatistics. To reduce memory needs and calculation time for the multiple-point geostatistical simulation step, this study uses the technique of direct multiple-point geostatistical simulation of edge properties. Instead of simulating pixel values, model cell edge properties indicating the presence of irregularly shaped surfaces are simulated using multiple-point geostatistical simulations. Results of a sensitivity analysis show under which conditions clay drapes have a significant effect on the concentration distribution. Calibration of the model against measured concentrations from the tracer tests reduces the uncertainty on the clay-drape parameters. The calibrated model shows which features of the breakthrough curves can be attributed to the geological heterogeneity of the aquifer and which features are caused by other processes.  相似文献   
100.
Due to its intensive data processing and highly distributed organization, the multidisciplinary Earth Science applications community is uniquely positioned for the uptake and exploitation of Grid technologies. Currently Enabling Grids for E-sciencE, and other large Grid infrastructures are already deployed and capable of operational services. So far however, the adoption and exploitation of Grid technology throughout the Earth Science community has been slower than expected. The Dissemination and Exploitation of GRids in Earth sciencE project, proposed by the European Commission to assist and accelerate this process in a number of different ways, had between its main goals the creation of a roadmap towards Earth Science Grid platform. This paper presents the resulting roadmap.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号