首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6344篇
  免费   238篇
  国内免费   96篇
测绘学   181篇
大气科学   587篇
地球物理   1562篇
地质学   2176篇
海洋学   627篇
天文学   863篇
综合类   25篇
自然地理   657篇
  2021年   65篇
  2020年   73篇
  2019年   91篇
  2018年   133篇
  2017年   122篇
  2016年   166篇
  2015年   160篇
  2014年   206篇
  2013年   353篇
  2012年   251篇
  2011年   287篇
  2010年   208篇
  2009年   325篇
  2008年   308篇
  2007年   279篇
  2006年   230篇
  2005年   211篇
  2004年   219篇
  2003年   214篇
  2002年   201篇
  2001年   147篇
  2000年   160篇
  1999年   134篇
  1998年   125篇
  1997年   102篇
  1996年   92篇
  1995年   93篇
  1994年   87篇
  1993年   77篇
  1992年   68篇
  1991年   74篇
  1990年   72篇
  1989年   66篇
  1988年   62篇
  1987年   74篇
  1986年   57篇
  1985年   84篇
  1984年   88篇
  1983年   87篇
  1982年   78篇
  1981年   81篇
  1980年   67篇
  1979年   64篇
  1978年   48篇
  1977年   62篇
  1976年   72篇
  1975年   53篇
  1974年   60篇
  1973年   51篇
  1972年   26篇
排序方式: 共有6678条查询结果,搜索用时 218 毫秒
991.
Solar flares occur due to the sudden release of energy stored in active-region magnetic fields. To date, the precursors to flaring are still not fully understood, although there is evidence that flaring is related to changes in the topology or complexity of an active-region’s magnetic field. Here, the evolution of the magnetic field in active region NOAA 10953 was examined using Hinode/SOT-SP data over a period of 12 hours leading up to and after a GOES B1.0 flare. A number of magnetic-field properties and low-order aspects of magnetic-field topology were extracted from two flux regions that exhibited increased Ca ii H emission during the flare. Pre-flare increases in vertical field strength, vertical current density, and inclination angle of ≈ 8° toward the vertical were observed in flux elements surrounding the primary sunspot. The vertical field strength and current density subsequently decreased in the post-flare state, with the inclination becoming more horizontal by ≈ 7°. This behavior of the field vector may provide a physical basis for future flare-forecasting efforts.  相似文献   
992.
993.
Abstract– Even in the absence of any biosphere on Mars, organic molecules, including polycyclic aromatic hydrocarbons (PAHs), are expected on its surface due to delivery by comets and meteorites of extraterrestrial organics synthesized by astrochemistry, or perhaps in situ synthesis in ancient prebiotic chemistry. Any organic compounds exposed to the unfiltered solar ultraviolet spectrum or oxidizing surface conditions would have been readily destroyed, but discoverable caches of Martian organics may remain shielded in the subsurface or within surface rocks. We have studied the stability of three representative polycyclic aromatic hydrocarbons (PAHs) in a Mars chamber, emulating the ultraviolet spectrum of unfiltered sunlight under temperature and pressure conditions of the Martian surface. Fluorescence spectroscopy is used as a sensitive indicator of remaining PAH concentration for laboratory quantification of molecular degradation rates once exposed on the Martian surface. Fluorescence‐based instrumentation has also been proposed as an effective surveying method for prebiotic organics on the Martian surface. We find the representative PAHs, anthracene, pyrene, and perylene, to have persistence half‐lives once exposed on the Martian surface of between 25 and 60 h of noontime summer UV irradiation, as measured by fluorescence at their peak excitation wavelength. This equates to between 4 and 9.6 sols when the diurnal cycle of UV light intensity on the Martian surface is taken into account, giving a substantial window of opportunity for detection of organic fluorescence before photodegradation. This study thus supports the use of fluorescence‐based instrumentation for surveying recently exposed material (such as from cores or drill tailings) for native Martian organic molecules in rover missions.  相似文献   
994.
Fault zones are an important control on fluid flow, affecting groundwater supply, contaminant migration, and carbon storage. However, most models of fault seal do not consider fault zone cementation, despite the recognition that it is common and can dramatically reduce permeability. In order to study the field-scale hydrogeologic effects of fault zone cementation, we conducted a series of aquifer pumping tests in wells installed within tens of meters of the variably cemented Loma Blanca Fault, a normal fault in the Rio Grande Rift. In the southern half of the study area, the fault zone is cemented by calcite; the cemented zone is 2-8 m wide. In the center of the study area, the cemented fault zone is truncated at a buttress unconformity that laterally separates hydrostratigraphic units with a ∼40X difference in permeability. The fault zone north of the unconformity is not cemented. Constant rate pumping tests indicate that where the fault is cemented, it is a barrier to groundwater flow. This is an important demonstration that a fault with no clay in its core and similar sediment on both sides can be a barrier to groundwater flow by virtue of its cementation; most conceptual models for the hydrogeology of faults would predict that it would not be a barrier to groundwater flow. Additionally, the lateral permeability heterogeneity across the unconformity imposes another important control on the local flow field. This permeability discontinuity acts as either a no-flow boundary or a constant head boundary, depending on the location of pumping.  相似文献   
995.
A numerical study demonstrates the effects of flooding on subsurface hydrological flowpaths and nitrate removal in anoxic groundwater in riparian zones with a top peat layer. A series of two-dimensional numerical simulations with changing conditions for flow (steady state or transient with flooding), hydrogeology, denitrification, and duration of flooding demonstrate how flowpaths, residence times, and nitrate removal are affected. In periods with no flooding groundwater flows horizontally and discharges to the river through the riverbed. During periods with flooding, shallow groundwater is forced upwards as discharge through peat layers that often have more optimal conditions for denitrification caused by the presence of highly reactive organic matter. The contrast in hydraulic conductivity between the sand aquifer and the overlying peat layer, as well as the flooding duration, have a significant role in determining the degree of nitrate removal.  相似文献   
996.
The passive, ambient sound above the water from a river has previously untapped potential for determining flow characteristics such as stage. Measuring sub-aerial sound could provide a new, efficient way to continuously monitor river stage, without the need for in-stream infrastructure. Previous published work has suggested that there might be a relationship between sound and river stage, but the analysis has been restricted to a narrow range of flow conditions and river morphologies. We present a method to determine site suitability and the process of how to record and analyse sound. Data collected along a 500 m length of the River Washburn during July 2019 is used to determine what makes a site suitable for sound monitoring. We found that sound is controlled by roughness elements in the channel, such as a boulder or weir, which influences the sound produced. On the basis of these findings, we collect audio recordings from six sites around the northeast of England, covering a range of flow conditions and different roughness elements, since 2019. We use data from those sites collected during storms Ciara and Dennis to produce a relationship between this sound and river stage. Our analysis has shown a positive relationship between an R2 of 0.73 and 0.99 in all rivers, but requires careful site selection and data processing to achieve the best results. We introduce a filter that is capable of isolating a river's sound from other environmental sound. Future work in examining the role of these roughness elements is required to understand the full extent of this technique. By demonstrating that sound can operate as a hydrometric tool, we suggest that sound monitoring could be used to provide cost-effective monitoring devices, either to detect relative change in a river or, after more research, a reliable stage measurement.  相似文献   
997.
通过对岩浆冷却过程的数字模拟研究,揭示出岩浆在冷却成矿过程中的温度分布和变化规律及影响因素.在此基础上,进一步应用高精度的温龄计组合来限定岩浆成矿体系的热演化和剥露历史,精确地计算出岩浆的初始侵位时间和深度、矿物结晶时间、冷却速率、冷却和暴露地表时间,以及剥露和剥蚀速率等重要参数,并将模拟结果应用于斑岩铜矿床的成矿研究中.研究表明,将精确的年龄测试手段与计算机模拟技术相结合,可为定量研究岩浆矿床的热演化和剥露史、深入了解矿床的成因机制提供一种有效方法.  相似文献   
998.
There is no generally accepted evolutionary scheme for high mass star formation yet. A simple approach to address this problem is to cover several of the known stages during the formation of massive stars in the same cloud and then investigate their properties trying to construct an evolutionary sequence. Here we present such a project conducted with complementary APEX and ATCA observations. These observations show a compact and bright single hot core in the G327.3-0.6 region on a 0.03 pc scale with a mass of 500 M and 0.5–1.5 105 L. Additionally a clumpy filament is seen in N2H+. Together with cm continuum observations, the data reveal like pearls on a string several stages of massive star formation, with likely the youngest stages hiding in the cold N2H+ cores analysed with a multilevel study of the APEX and ATCA observations.  相似文献   
999.
We have used Cassini stereo images to study the topography of Iapetus' leading side. A terrain model derived at resolutions of 4-8 km reveals that Iapetus has substantial topography with heights in the range of −10 km to +13 km, much more than observed on the other middle-sized satellites of Saturn so far. Most of the topography is older than 4 Ga [Neukum, G., Wagner, R., Denk, T., Porco, C.C., 2005. Lunar Planet. Sci. XXXVI. Abstract 2034] which implies that Iapetus must have had a thick lithosphere early in its history to support this topography. Models of lithospheric deflection by topographic loads provide an estimate of the required elastic thickness in the range of 50-100 km. Iapetus' prominent equatorial ridge [Porco, C.C., and 34 colleagues, 2005. Science 307, 1237-1242] reaches widths of 70 km and heights of up to 13 km from their base within the modeled area. The morphology of the ridge suggests an endogenous origin rather than a formation by collisional accretion of a ring remnant [Ip, W.-H., 2006. Geophys. Res. Lett. 33, doi:10.1029/2005GL025386. L16203]. The transition from simple to complex central peak craters on Iapetus occurs at diameters of 11±3 km. The central peaks have pronounced conical shapes with flanking slopes of typically 11° and heights that can rise above the surrounding plains. Crater depths seem to be systematically lower on Iapetus than on similarly sized Rhea, which if true, may be related to more pronounced crater-wall slumping (which widens the craters) on Iapetus than on Rhea. There are seven large impact basins with complex morphologies including central peak massifs and terraced walls, the largest one reaches 800 km in diameter and has rim topography of up to 10 km. Generally, no rings are observed with the basins consistent with a thick lithosphere but still thin enough to allow for viscous relaxation of the basin floors, which is inferred from crater depth-to-diameter measurements. In particular, a 400-km basin shows up-domed floor topography which is suggestive of viscous relaxation. A model of complex crater formation with a viscoplastic (Bingham) rheology [Melosh, H.J., 1989. Impact Cratering. Oxford Univ. Press, New York] of the impact-shocked icy material provides an estimate of the effective cohesion/viscosity at . The local distribution of bright and dark material on the surface of Iapetus is largely controlled by topography and consistent with the dark material being a sublimation lag deposit originating from a bright icy substrate mixed with the dark components, but frost deposits are possible as well.  相似文献   
1000.
The formation of organic compounds in the atmosphere of Titan is an ongoing process of the generation of complex organics from the simplest hydrocarbon, methane. Solar radiation and magnetosphere electrons are the main energy sources that drive the reactions in Titan's atmosphere. Since energy from solar radiation is 200 times greater than that from magnetosphere electrons, we have investigated the products formed by the action of UV radiation (185 and 254 nm) on a mixture of gases containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene, the basic gas mixture (BGM) that simulates aspects of Titan's atmosphere using a flow reactor [Tran, B.N., Ferris, J.P., Chera, J.J., 2003a. Icarus 162, 114-124; Tran, B.N., Joseph, J.C., Force, M., Briggs, R.G., Vuitton, V., Ferris, J.P., 2005. Icarus 177, 106-115]. The present research extends these studies by the addition of carbon monoxide and hydrogen cyanide to the BGM. Quantum yields for the loss of reactants and the formation of volatile products were determined and compared with those measured in the absence of the hydrogen cyanide and carbon monoxide. The GCMS analyses of the volatile photolysis products from the BGM, with added hydrogen cyanide, had a composition similar to that of the BGM while the photolysis products of the BGM with added carbon monoxide contained many oxygenated compounds. The infrared spectrum of the corresponding solid product revealed the absorption band of a ketone group, which was probably formed from the reaction of carbon monoxide with the free radicals generated by photolysis of acetylene and ethylene. Of particular interest was the observation that the addition of HCN to the gas mixture only resulted in a very small change in the C/N ratio and in the intensity of the CN frequency at 2210 cm−1 in the infrared spectrum suggesting that little HCN is incorporated into the haze analog. The C/N ratio of the haze analogs was found to be in the 10-12 range. The UV spectra of the solid products formed when HCN or CO added to the BGM is similar to the UV absorption formed from the BGM alone. This result is consistent with absence of additional UV chromophores to the solid product when these mixtures are photolyzed. The following photoproducts, which were not starting materials in our photochemical studies, have been observed on Titan: acetonitrile, benzene, diacetylene, ethane, propene, propane, and propyne.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号