首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5758篇
  免费   225篇
  国内免费   89篇
测绘学   168篇
大气科学   546篇
地球物理   1441篇
地质学   1993篇
海洋学   549篇
天文学   754篇
综合类   22篇
自然地理   599篇
  2021年   60篇
  2020年   64篇
  2019年   86篇
  2018年   124篇
  2017年   116篇
  2016年   156篇
  2015年   144篇
  2014年   202篇
  2013年   323篇
  2012年   242篇
  2011年   263篇
  2010年   191篇
  2009年   304篇
  2008年   285篇
  2007年   262篇
  2006年   220篇
  2005年   188篇
  2004年   196篇
  2003年   189篇
  2002年   181篇
  2001年   133篇
  2000年   136篇
  1999年   113篇
  1998年   107篇
  1997年   91篇
  1996年   84篇
  1995年   85篇
  1994年   75篇
  1993年   63篇
  1992年   65篇
  1991年   69篇
  1990年   66篇
  1989年   59篇
  1988年   58篇
  1987年   65篇
  1986年   43篇
  1985年   73篇
  1984年   80篇
  1983年   72篇
  1982年   65篇
  1981年   76篇
  1980年   63篇
  1979年   57篇
  1978年   38篇
  1977年   54篇
  1976年   63篇
  1975年   46篇
  1974年   56篇
  1973年   47篇
  1972年   25篇
排序方式: 共有6072条查询结果,搜索用时 171 毫秒
991.
Land use change under conditions of high population pressure: the case of Java   总被引:15,自引:0,他引:15  
A long history of increases in population pressure in Java has caused agricultural land use to expand and intensify. More recent land use changes caused the conversion of prime agricultural land into residential and industrial area. Results of a dynamic, regional-scale, land use change model are presented, defining the spatial distribution of these land use changes. The model is based on multi-scale modelling of the relations between land use and socio-economic and biophysical determinants. Historical validation showed that the model can adequately simulate the pattern of land use change. Future patterns of land use change between 1994 and 2010 are simulated assuming further urbanization. The results suggest that most intensive land use changes will occur in Java's lowland areas.  相似文献   
992.
Two distinct layers usually exist in the upper ocean. The first has a near-zero vertical gradient in temperature (or density) from the surface and is called the isothermal layer (or mixed layer). Beneath that is a layer with a strong vertical gradient in temperature (or density), called the thermocline (or pycnocline). The isothermal layer depth (ILD) or mixed layer depth (MLD) for the same profile varies depending on the method used to determine it. Also, whether they are subjective or objective, existing methods of determining the ILD do not estimate the thermocline (pycnocline) gradient. Here, we propose a new exponential leap-forward gradient (ELG) method of determining the ILD that retains the strengths of subjective (simplicity) and objective (gradient change) methods and avoids their weaknesses (subjective methods are threshold-sensitive and objective methods are computationally intensive). This new method involves two steps: (1) the estimation of the thermocline gradient G th for an individual temperature profile, and (2) the computation of the vertical gradient by averaging over gradients using exponential leap-forward steps. Such averaging can filter out noise in the profile data. Five existing methods of determining the ILD (difference, gradient, maximum curvature, maximum angle, and optimal linear fitting methods) as well as the proposed ELG method were verified using global expendable bathythermograph (XBT) temperature and conductivity–temperature–depth (CTD) datasets. Among all the methods considered, the ELG method yielded the highest skill score and the lowest Shannon information entropy (i.e., the lowest uncertainty).  相似文献   
993.
Determining groundwater ages from environmental tracer concentrations measured on samples obtained from open bores or long-screened intervals is fraught with difficulty because the sampled water represents a variety of ages. A multi-tracer technique (Cl, 14C, 3H, CFC-11, CFC-12, CFC-113 and SF6) was used to decipher the groundwater ages sampled from long-screened production bores in a regional aquifer around an open pit mine in the Pilbara region of northwest Australia. The changes in tracer concentrations due to continuous dewatering over 7 years (2008–2014) were examined, and the tracer methods were compared. Tracer concentrations suggest that groundwater samples are a mixture of young and old water; the former is inferred to represent localised recharge from an adjacent creek, and the latter to be diffuse recharge. An increase in 14C activity with time in wells closest to the creek suggests that dewatering of the open pit to achieve dry mining conditions has resulted in change in flow direction, so that localised recharge from the creek now forms a larger proportion of the pumped groundwater. The recharge rate prior to development, calculated from a steady-state Cl mass balance, is 6 mm/y, and is consistent with calculations based on the 14C activity. Changes in CFC-12 concentrations with time may be related to the change in water-table position relative to the depth of the well screen.  相似文献   
994.
International Journal of Earth Sciences - New Ar–Ar muscovite and Rb–Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on...  相似文献   
995.
We utilized an extensive data set (1977–2013) from a water quality monitoring program to investigate the recovery of a Danish estuary following large reductions in total phosphorus (TP) and total nitrogen (TN) loading. Monthly rates of net transport and biogeochemical transformation of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) were computed in two basins of the estuary using a box model approach, and oxygen-based rates of net ecosystem production (NEP) were determined. Since 1990, nutrient loading was reduced by 58 % for nitrogen and 80 % for phosphorus, causing significant decreases in DIN (60 %) and DIP (85 %) concentrations. Reductions in nutrient loadings and concentrations reduced annual chlorophyll levels by 50 % in the inner estuary and improved Secchi depth by approximately 1 m during the same period, particularly in the summer period. In the outer, deeper region of the estuary trends in water quality was less evident. Improvements in the inner estuary were strongly coupled to declines in DIN. Thresholds of DIN and DIP concentrations limiting phytoplankton growth indicated that both regions of the estuary were nitrogen limited. NEP rates indicated the development of more net autotrophic conditions over time that were likely associated with higher benthic primary production stimulated by improved light conditions. Box model computations revealed a modest reduction in summer net production of DIP over time, despite the persistence of elevated fluxes for several years after external loads were reduced. Since the mid-1990s, nutrient loading and transformation were stable while nutrient concentrations continued to decline and water quality improved in the inner estuary. The oligotrophication trajectory involved an initial fast transformation and modest retention of nutrients followed by a gradual decline in the rate of improvement towards a new stable condition.  相似文献   
996.
The Quaternary stratigraphy of the Alpine Foreland consists of distinct terrace levels, which have been assigned to four morphostratigraphic units: Höhere (Higher) Deckenschotter, Tiefere (Lower) Deckenschotter, Hochterrasse (High Terrace) and Niederterrasse (Lower Terrace). Here, we focus on the terrace gravels at Hohle Gasse, SSE of Pratteln near Basel, which are mapped as Tiefere Deckenschotter. Petrographic and morphometric data established from clasts allowed to infer the transport mechanisms and sources of the gravels. Sedimentological analyses indicate that the gravels were transported by a braided river and deposited in a distal glaciofluvial setting. In addition, it can be shown that the majority of the clasts display multiple reworking and only a minority maintained a distinct glaciofluvial shape. Cosmogenic multi-isotope dating using 10Be and 36Cl allowed direct dating of the sediments at the study site. A depth-profile age of \(2 70_{ - 1 90}^{ + 8 30}\) ka for 10Be was achieved for the deposits at Hohle Gasse. Unfortunately, no age could be modelled from the 36Cl concentrations as the blank correction was too high. Furthermore, this age proves that the studied terrace level should be assigned to the morphostratigraphic unit Hochterrasse.  相似文献   
997.
The hydraulic gradient between aquifers and rivers is one of the most variable properties in a river/aquifer system. Detailed process understanding of bank storage under hydraulic gradients is obtained from a two‐dimensional numerical model of a variably saturated aquifer slice perpendicular to a river. Exchange between the river and the aquifer occurs first at the interface with the unsaturated zone. The proportion of total water exchanged through the river bank compared to the river bed is a function of aquifer hydraulic conductivity, partial penetration, and hydraulic gradient. Total exchange may be estimated to within 50% using existing analytical solutions provided that unsaturated zone processes do not strongly influence exchange. Model‐calculated bank storage is at a maximum when no hydraulic gradient is present and increases as the hydraulic conductivity increases. However, in the presence of a hydraulic gradient, the largest exchange flux or distance of penetration does not necessarily correspond to the highest hydraulic conductivity, as high hydraulic conductivity increases the components of exchange both into and out of an aquifer. Flood wave characteristics do not influence ambient groundwater discharge, and so in large floods, hydraulic gradients must be high to reduce the volume of bank storage. Practical measurement of bank storage metrics is problematic due to the limitations of available measurement technologies and the nested processes of exchange that occur at the river‐aquifer interface. Proxies, such as time series concentration data in rivers and groundwater, require further development to be representative and quantitative.  相似文献   
998.
999.
Since cuspate coastlines are especially sensitive to changes in wave climate, they serve as potential indicators of initial responses to changing wave conditions. Previous work demonstrates that Cape Hatteras and Cape Lookout, North Carolina, which are largely unaffected by shoreline stabilization efforts, have become increasingly asymmetric over the past 30 years, consistent with model predictions for coastline response to increases in Atlantic Ocean summer wave heights and resulting changes in the distribution of wave‐approach angles. Historic and recent shoreline change observations for Cape Fear, North Carolina, and model simulations of coastline response to an increasingly asymmetric wave climate in the presence of beach nourishment, produce comparable differences in shoreline change rates in response to changes in wave climate. Results suggest that the effect of beach nourishment is to compensate for – and therefore to mask – natural responses to wave climate change that might otherwise be discernible in patterns of shoreline change alone. Therefore, this case study suggests that the effects of wave climate change on human‐modified coastlines may be detectable in the spatial and temporal patterns of shoreline stabilization activities. Similar analyses of cuspate features in areas where the change in wave climate is less pronounced (i.e. Fishing Point, Maryland/Virginia) and where local geology appears to exert control on coastline shape (i.e. Cape Canaveral, Florida), suggest that changes in shoreline configuration that may be arising from shifting wave climate are currently limited to sandy wave‐dominated coastlines where the change in wave climate has been most pronounced. However, if hurricane‐generated wave heights continue to increase, large‐scale shifts in patterns of erosion and accretion will likely extend beyond sensitive cuspate features as the larger‐scale coastline shape comes into equilibrium with changing wave conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1000.
The Holocene evolution of the Canning Coast of Western Australia has largely been overlooked so far mainly due to its remoteness and low population density. We report on new data from a sequence of foredunes inside the macro‐tidal Admiral Bay, 110 km southwest of Broome. Based on sediment cores, differential global positioning system (dGPS)‐based elevation transects, and stratigraphical analyses on outcrops of the relict foredunes, we aim at reconstructing Holocene coastal changes and relative sea levels (RSLs), as well as identifying and dating imprints of extreme‐wave events. Sedimentary analyses comprise the documentation of bedding structures, foraminiferal content and macrofaunal remains, grain size distribution, and organic matter. The chronological framework is based on 26 carbon‐14 accelerator mass spectrometry (14C‐AMS) datings. Marine flooding of the pre‐Holocene surface landward of the 2.5 km‐wide foredune barriers occurred 7400–7200 cal bp , when mangroves colonized the area. After only 200–400 years, a high‐energy inter‐tidal environment established and prevailed until c. 4000 cal bp , before turning into the present supralittoral mudflat. During that time, coastal regression led to beach progradation and the formation of aligned foredunes. Drivers of progradation were a stable RSL or gradual RSL fall after the mid‐Holocene and a positive sand budget. The foredunes overlie upper beach deposits located up to >2 m above the present upper beach level and provide evidence for a higher mid‐Holocene RSL. Discontinuous layers of coarse shells and sand are intercalated in the foredunes, indicating massive coastal flooding events. One such layer was traced over three dune ridges and dated to c. 1700–1550 cal bp . However, it seems that most tropical cyclones induce net erosion rather than deposition at aligned foredunes and thus, they are only suitable for reconstructing temporal variability if erosional features or sedimentation reliably tied to these events can be identified and dated accurately. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号