首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31803篇
  免费   1775篇
  国内免费   3092篇
测绘学   2241篇
大气科学   3214篇
地球物理   6195篇
地质学   15910篇
海洋学   2154篇
天文学   1968篇
综合类   2814篇
自然地理   2174篇
  2024年   83篇
  2023年   246篇
  2022年   530篇
  2021年   579篇
  2020年   508篇
  2019年   509篇
  2018年   5228篇
  2017年   4436篇
  2016年   3084篇
  2015年   734篇
  2014年   643篇
  2013年   580篇
  2012年   1522篇
  2011年   3227篇
  2010年   2509篇
  2009年   2733篇
  2008年   2252篇
  2007年   2704篇
  2006年   430篇
  2005年   484篇
  2004年   594篇
  2003年   616篇
  2002年   437篇
  2001年   217篇
  2000年   226篇
  1999年   266篇
  1998年   183篇
  1997年   153篇
  1996年   123篇
  1995年   142篇
  1994年   109篇
  1993年   112篇
  1992年   81篇
  1991年   56篇
  1990年   46篇
  1989年   50篇
  1988年   31篇
  1987年   29篇
  1986年   32篇
  1985年   28篇
  1984年   10篇
  1983年   11篇
  1982年   9篇
  1981年   27篇
  1980年   26篇
  1979年   8篇
  1978年   4篇
  1976年   7篇
  1958年   11篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
192.
Effects of rapidly changing ionospheric weather are critical in high accuracy positioning, navigation, and communication applications. A system used to construct the global total electron content (TEC) distribution for monitoring the ionospheric weather in near-real time is needed in the modern society. Here we build the TEC map named Taiwan Ionosphere Group for Education and Research (TIGER) Global Ionospheric Map (GIM) from observations of ground-based GNSS receivers and space-based FORMOSAT-3/COSMIC (F3/C) GPS radio occultation observations using the spherical harmonic expansion and Kalman filter update formula. The TIGER GIM (TGIM) will be published in near-real time of 4-h delay with a spatial resolution of 2.5° in latitude and 5° in longitude and a high temporal resolution of every 5 min. The F3/C TEC results in an improvement on the GIM of about 15.5%, especially over the ocean areas. The TGIM highly correlates with the GIMs published by other international organizations. Therefore, the routinely published TGIM in near-real time is not only for communication, positioning, and navigation applications but also for monitoring and scientific study of ionospheric weathers, such as magnetic storms and seismo-ionospheric anomalies.  相似文献   
193.
The reliability of the classical geometry- and ionospheric-free (GIF) three-carrier ambiguity resolution (TCAR) degrades when applied to long baselines of hundreds of kilometers. To overcome this deficiency, we propose two new models, which are used sequentially to resolve wide-lane (WL) and narrow-lane (NL) ambiguities and form a stepwise ambiguity resolution (AR) strategy. In the first model, after a successful extra-wide-lane AR, the pseudorange and phase observations are combined to estimate WL ambiguities, in which the residual ionospheric delays and geometry effects are eliminated. In the second model, using the resolved ambiguities from the first step, the two WL ambiguities are combined to remove ionospheric and geometry effects. The unknown coefficients in the two models are determined in such that they minimize the formal errors in the ambiguity estimates to optimize the ambiguity estimation. Using experimental BeiDou triple-frequency observations, we evaluate our method and identify three advantages. First, the two models use double-differenced phase observations that are not differences across frequency. Second, the two models are entirely free from ionospheric delay and geometry effects. Third, the unknown estimates in the two models satisfy the minimum noise condition, which makes the formal errors in the float NL ambiguity estimates much lower than those obtained with common GIF TCAR methods, thereby directly and significantly increasing the success rate of AR compared to the cascaded integer resolution method and two other GIF combinations.  相似文献   
194.
The understanding influence of multiple factors variations on land surface temperature (LST) remains elusive. LST was retrieved by the atmospheric correction algorithms. Based on the correlation coefficients, stepwise regression analysis was developed to examine how multiple factors variability led to LST variations. The differences in LST between impact factors vary depending on time in a day. The elevation and land use types significantly affect the LST in sunny slope or shadow areas has a significantly quadratic curve correlation or a negative linear correlation with it, the influence of slope and aspect is not very significant. LST for forestland, grassland and bare land in the sunny slope and shadow area was the cubic polynomial related to its elevation. Normalized difference vegetation index (NDVI) and normalized difference moisture index (NDMI) effectively express LST in mountainous. LST and NDMI or NDVI have a significantly negative correlation, NDMI is more effective and more applicable for the expression of LST.  相似文献   
195.
196.
To solve the low detection efficiency problem of Constrained Energy Minimization (CEM) method used for hyperspectral remote sensing imagery, this paper firstly presents two improved detection methods: principal component CEM (PCCEM) and matrix taper CEM (MTCEM). Then, based on these two methods, a more optimized Two-Time detection (TTD) method is proposed. Primarily, the targets of interest in the hyperspectral image are detected by using the PCCEM and MTCEM method. Then the autocorrelation matrix of non-target pixels is estimated according to the target detection results. Finally, based on this autocorrelation matrix, a new weight vector is constructed for the second detection. Under the effect of this new weight vector, the output energy of the target can be kept at unity and the output energy of the background is suppressed at the same time. Then, the improvement of target detection result can be realized. Experimental results on a real world hyperspectral data show the efficiency of the proposed TTD method to improve the detection performance.  相似文献   
197.
Synthetic aperture radar (SAR) is a day and night, all weather satellite imaging technology. Inherent property of SAR image is speckle noise which produces granular patterns in the image. Speckle noise occurs due to the interference of backscattered echo from earth’s rough surface. There are various speckle reduction techniques in spatial domain and transform domain. Non local means filtering (NLMF) is the technique used for denoising which uses Gaussian weights. In NLMF algorithm, the filtering is performed by taking the weighted mean of all the pixels in a selected search area. The weight given to the pixel is based on the similarity measure calculated as the weighted Euclidean distance over the two windows. Non local means filtering smoothes out homogeneous areas but edges are not preserved. So a discontinuity adaptive weight is used in order to preserve heterogeneous areas like edges. This technique is called as discontinuity adaptive non local means filtering and is well-adapted and robust in the case of Additive White Gaussian Noise (AWGN) model. But speckle is a multiplicative random noise and hence Euclidean distance is not a good choice. This paper presents evaluation results of using different distance measures for improving the accuracy of the Non local means filtering technique. The results are verified using real and synthetic images and from the results it can be concluded that the usage of Manhattan distance improves the accuracy of NLMF technique. Non local approach is used as a preprocessing or post processing technique for many denoising algorithms. So improving NLMF technique would help improving many of the existing denoising techniques.  相似文献   
198.
Information on highways is an essential input for various geospatial applications, including car navigation, forensic analysis on highway geometries, and intelligent transportation systems. Semi-automatic and automatic extractions of highways are critical for the regular updating of municipal databases and for highway maintenance. This study presents a semi-automatic data processing approach for extracting highways from high-resolution airborne LiDAR height information and aerial orthophotos. The method was developed based on two data sets. Experimental results for the first testing site showed that the accuracy of the proposed method for highway extraction was 74.50 % for completeness and 73.13 % for correctness. Meanwhile, the completeness and correctness for the second testing site were 71.20 and 70.72 %, respectively. The proposed method was compared with an object-based approach on a different data set. The accuracy for highway extraction of the object-based approach was 64.29 % for completeness and 63.11 % for correctness, whereas that of the proposed method was 67.14 % for completeness and 65.08 % for correctness. This research aims to promote semi-automatic highway extraction from LiDAR data and orthophotos by proposing a new approach and a multistep post-processing technique. The proposed method provides an accurate final output that is valuable for a wide range of geospatial applications.  相似文献   
199.
Chlorophyll fluorescence is an indicator of plant photosynthetic activity and has been used to monitor the health status of vegetation. Several studies have exploited the application of red/far-red chlorophyll fluorescence ratio in detecting the impact of various types of stresses in plants. Recently, sunlight-induced chlorophyll fluorescence imaging has been used to detect and discriminate different stages of mosaic virus infection in potted cassava plants with a multi-spectral imaging system (MSIS). In this study, the MSIS is used to investigate the impact of drought and herbicide stress in field grown crop plants. Towards this control and treatment groups of colocasia and sweet potato plants were grown in laterite soil beds and the reflectance images of these crop plants were recorded up to 14-days of treatment at the Fraunhofer lines of O2 B at 687 nm and O2 A at 759.5 nm and the off-lines at 684 and 757.5 nm. The recorded images were analyzed using the Fraunhofer Line Discrimination technique to extract the sunlight-induced chlorophyll fluorescence component from the reflectance images of the plant leaves. As compared to the control group, the chlorophyll fluorescence image ratio (F 687/F 760) in the treatment groups of both the plant varieties shows an increasing trend with increase in the extent of stress. Further, the F 687/F 760 ratio was found to correlate with the net photosynthetic rate (Pn) and stomatal conductance (gs) of leaves. The correlation coefficient (R 2) for the relationship of F 687/F 760 ratio with Pn were found to be 0.78, 0.79 and 0.78, respectively for the control, herbicide treated and drought treated colocasia plants, while these were 0.77, 0.86 and 0.88, respectively for sweet potato plants. The results presented show the potential of proximal remote sensing and the application F 687/F 760 fluorescence image ratio for effective monitoring of stress-induced changes in field grown plants.  相似文献   
200.
In recent years hyperspectral imaging has proved its significance in the detection and mapping of various objects of interest in a scene. Various methods for object detection in hyperspectral images have been developed with their advantages and limitations. In the present study, a methodology comprising spectral derivative (first order) and spectral information divergence has been investigated for detection of objects in hyperspectral images. The efficacy of the detection scheme has been examined over two different hyperspectral data sets of Hyperion images. Tea plants (Camellia sinensis) and Sal trees (Shorea robusta) (pure pixels) have been detected as the objects of interest in the hyperspectral images independently with reduced false pixels. The proposed methodology may in future be applied for classification of mixed pixels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号