首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   6篇
  国内免费   2篇
测绘学   13篇
大气科学   21篇
地球物理   71篇
地质学   95篇
海洋学   31篇
天文学   17篇
自然地理   15篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   9篇
  2019年   8篇
  2018年   9篇
  2017年   13篇
  2016年   11篇
  2015年   14篇
  2014年   12篇
  2013年   15篇
  2012年   14篇
  2011年   21篇
  2010年   20篇
  2009年   24篇
  2008年   12篇
  2007年   12篇
  2006年   10篇
  2005年   9篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
  1954年   1篇
排序方式: 共有263条查询结果,搜索用时 14 毫秒
141.
142.
Experiments at high pressure and temperature indicate that excess Ca may be dissolved in diopside. If the (Ca, Mg)2Si2O6 clinopyroxene solution extends to more Ca-rich compositions than CaMgSi2O6, macroscopic regular solution models cannot strictly be applied to this system. A nonconvergent site-disorder model, such as that proposed by Thompson (1969, 1970), may be more appropriate. We have modified Thompson's model to include asymmetric excess parameters and have used a linear least-squares technique to fit the available experimental data for Ca-Mg orthopyroxene-clinopyroxene equilibria and Fe-free pigeonite stability to this model. The model expressions for equilibrium conditions \(\mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction A) and \(\mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction B) are given by: 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Mg}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ W_{21} [2(X_{{\text{Ca}}}^{{\text{M2}}} )^3 - (X_{{\text{Ca}}}^{{\text{M2}}} ] \hfill \\ {\text{ + 2W}}_{{\text{22}}} [X_{{\text{Ca}}}^{{\text{M2}}} )^2 - (X_{{\text{Ca}}}^{{\text{M2}}} )^3 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{Wo}}}^{{\text{opx}}} )^2 \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Ca}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ 2W_{21} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^2 - (X_{{\text{Mg}}}^{{\text{M2}}} )^3 ] \hfill \\ {\text{ + W}}_{{\text{22}}} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^3 - (X_{{\text{Mg}}}^{{\text{M2}}} )^2 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{En}}}^{{\text{opx}}} )^2 \hfill \\ \hfill \\ \end{gathered} $$ where 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = 2.953 + 0.0602{\text{P}} - 0.00179{\text{T}} \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = 24.64 + 0.958{\text{P}} - (0.0286){\text{T}} \hfill \\ {\text{W}}_{{\text{21}}} = 47.12 + 0.273{\text{P}} \hfill \\ {\text{W}}_{{\text{22}}} = 66.11 + ( - 0.249){\text{P}} \hfill \\ {\text{W}}^{{\text{opx}}} = 40 \hfill \\ \Delta {\text{G}}_*^0 = 155{\text{ (all values are in kJ/gfw)}}{\text{.}} \hfill \\ \end{gathered} $$ . Site occupancies in clinopyroxene were determined from the internal equilibrium condition 1 $$\begin{gathered} \Delta G_{\text{E}}^{\text{O}} = - {\text{RT 1n}}\left[ {\frac{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}{{X_{{\text{Ca}}}^{{\text{M2}}} \cdot X_{{\text{Mg}}}^{{\text{M1}}} }}} \right] + \tfrac{1}{2}[(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} )(2{\text{X}}_{{\text{Ca}}}^{{\text{M2}}} - 1) \hfill \\ {\text{ + }}\Delta G_*^0 (X_{{\text{Ca}}}^{{\text{M1}}} - X_{{\text{Ca}}}^{{\text{M2}}} ) + \tfrac{3}{2}(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} ) \hfill \\ {\text{ (1}} - 2X_{{\text{Ca}}}^{{\text{M1}}} )(X_{{\text{Ca}}}^{{\text{M1}}} + \tfrac{1}{2})] \hfill \\ \end{gathered} $$ where δG E 0 =153+0.023T+1.2P. The predicted concentrations of Ca on the clinopyroxene Ml site are low enough to be compatible with crystallographic studies. Temperatures calculated from the model for coexisting ortho- and clinopyroxene pairs fit the experimental data to within 10° in most cases; the worst discrepancy is 30°. Phase relations for clinopyroxene, orthopyroxene and pigeonite are successfully described by this model at temperatures up to 1,600° C and pressures from 0.001 to 40 kbar. Predicted enthalpies of solution agree well with the calorimetric measurements of Newton et al. (1979). The nonconvergent site disorder model affords good approximations to both the free energy and enthalpy of clinopyroxenes, and, therefore, the configurational entropy as well. This approach may provide an example for Febearing pyroxenes in which cation site exchange has an even more profound effect on the thermodynamic properties.  相似文献   
143.
The use of radioactive isotopes plays a very important role in dating groundwater, providing an apparent age of the systems in the framework of the aquifers conceptual modelling making available important features about the water fluxes, such as recharge, horizontal flow rates and discharge. In this paper, special emphasis has been put on isotopic constraints in the use of δ13C and 14C content as a dating tool in some hot (76 °C) and cold (17 °C) CO2-rich mineral waters discharging in the Vilarelho da Raia–Pedras Salgadas region (N-Portugal). The radiocarbon content determined in these CO2-rich mineral waters (14C activity from 4.3 up to 9.9 pmc) is incompatible with the systematic presence of 3H (from 1.7 to 7.9 TU). The δ13C values of the studied CO2-rich mineral waters indicate that the total C in the recharge waters is being masked by larger quantities of CO2 (14C-free) introduced from deep-seated (upper mantle) sources. This paper demonstrates that a good knowledge of mineral water systems is essential to allow hydrologists to make sound conclusions on the use of C isotopic data in each particular situation.  相似文献   
144.
145.
South America is experiencing rapid change in forest cover, of both native and planted forest. Forest cover loss is primarily attributable to fire, logging, and conversion of native forest to agriculture, pasture, and forest plantations, and types of change vary within and among the many diverse types of forests in South America. Major changes in forest cover and growing policy concerns underscore an urgent need for research on sustainable forest management and water ecosystem services in South America. Differences in land ownership and management objectives create trade‐offs between wood production and water ecosystem services from forests. Work is needed to quantify how forest change and management affect ecosystem services, such as wood production versus water provision. Current scientific understanding of forest management effects on water ecosystem services in South America has important limitations, including a scarcity of long‐term records and few long‐term integrated watershed studies. Industry, government, universities, and local communities should collaborate on integrated applied studies of forests and water. Data archiving and publically available data are required. The creation of national networks and a multi‐country South America network to identify and implement common water research protocols, share results, and explore their implications would promote common and well‐supported policies. Hydrologists working in South America are well placed to tackle the challenges and opportunities for collaborative research that will maintain the intrinsic values and water ecosystem services provided by South America's forests.  相似文献   
146.
Soil erosion, transport and deposition of sediments represent invisible threats that along time can affect negatively the existing infrastructure of roads and dams, and the quality of air and water resources. In the last decades, a great number of researches were devoted to study erosion and sediments transportation processes. However, they addressed mostly areas of agriculture, water impoundments for dams, and land conservation. A lack of studies for erosion processes in urban areas is evident, in special those aiming to diminish the deposition of sediments originated from urban areas into the rivers and air, in special as airborne particulate. Traditionally, the costs associated in controlling erosion and sediments in urban areas are high and in some case, out of the range for most developing countries. Factors responsible for those high prices are the use of heavy equipments for soil grading and transportation, the use of costly building materials, and the need for employing more specialized personnel. In the case of gullies in urban areas, another concern is to ensure proper equipment access to the area for remediation operations. Hereby, it is presented a cost-effective method to recover an extensive gully erosion area of about 11,000 m2 located in urban area. Estimated sediments released from this area to the water resources and air were estimated on about 66,000,000 tons. In this study area, bioengineering works were performed in 60 days, with hardly any sediment generated outside the work area resulting from bioengineering operations. A combination of bioengineering techniques were chosen for this study area, which was a mixture of rigid and biological products including biologs, silt fence, biodegradable straw blankets sewn with plastic threads derived from recycled PET bottles, among others. An efficient drainage system was implemented for preventing upland flow, sub-seepage and seepage. Biologs were used aiming to fulfill a double role, the first as barrier to soil sediments flow, and the second as filler for empty spaces, avoiding expensive grading operations. All engineering works were concluded in about 60 days at a cost of US0.89/m < sup > 2 < /sup > . This price is cost-effective if compared with the traditional engineering cost of approximately US 0.89/m2. This price is cost-effective if compared with the traditional engineering cost of approximately US 2.92/m2 because it includes extensive use of grading and soil transportation. An environmental advantage of the bioengineering method is the immediate reduction of airborne particulates. Furthermore, the overall visual aesthetics improved shortly after the implementation of the works because the bare ground was substituted by native vegetation. After 6 months the vegetation in the gully erosion area was totally established. Monitoring was performed after 12 months and no erosion and sediment transport was visually noticed. The ease implementation of this technique without the need for specialized workers in combination with low prices makes this method a model for developing countries.  相似文献   
147.
Natural Hazards - Decadal predictions bridge the gap between the short-term weather/seasonal forecasts and the long-term climate projections. They target the reproduction of large-scale weather...  相似文献   
148.
In this paper, we present the seasonal characteristics of the post-noon rise of the equatorial electrojet 3-m irregularities scattering region observed over São Luís, Brazil (2.3S, 44.2W, dip:-0.5). The study is based on a 1 year data set collected by the 50 MHz coherent back-scatter radar (also known by the acronym RESCO), that started operation in 1998. Using a method to estimate the moments from each individual back-scattered power profiles that constitute the standard range–time–intensity (RTI) maps we were able to determine the following representative parameters of the electrojet: the total power back-scattered by the electrojet irregularities (EJP), the thickness of the electrojet back-scattered power profile (EJT), the height of the center of the back-scatter region, that is, the power profile, (EJC), and the noise level corresponding to each power profile (EJN). The parameterization was applied to all selected daily RTI maps from 2002. The analysis was carried out by grouping the data according to the radar beam angle (tilted 30 westward or eastward), the magnetic disturbance indices Kp and the season, which enables us to quantify the differences in the parameters on these bases. The results are presented and discussed here focusing on the post-noon ascent of the EJC. We will also present results on the east–west asymmetry in the radar back-scattered echo power confirming our previous results, and on the appearance of a scattering region after sunset during magnetically quiet conditions around the southern summer solstice.  相似文献   
149.
Simulation studies are presented that consider the degree to which baroclinic ocean circulation models are constrained by observations of the surface pressure field on space and time-scales possible with future satellite-borne altimeters. Two- and three-layer eddy resolving quasi-geostrophic models are used to simulate and assimilate altimetric observations.For synoptic mapping of the oceanic eddy field on the scale of an ocean basin, a satellite orbit repeat time of 14 days is found to be optimum. Our studies suggest that altimetric observations will provide strong constraints on the surface flow of such models and, if used in conjunction with them, may be used to infer the deep flows.  相似文献   
150.
The Nanpanjiang Basin occurs in a key position for resolving controversies of basin tectonics and patterns of plate assembly at the junction between south China and Southeast Asian plates. Paleocurrent measurements indicate that siliciclastic turbidites in the basin were sourced by the Precambrian Jiangnan uplift to the northeast, the Precambrian Yunkai uplift to the southeast and the Triassic Songma suture to the south. Detrital zircon geochronology reveals Archean (2500 Ma), Paleoproterozoic (1800–1900 Ma), Neoproterozoic (900–1000 Ma) and Paleozoic (420–460 Ma) ages consistent with derivation from the Jiangnan and Yunkai uplifts. A large Permian‐Triassic peak of 250 Ma is present in the southern basin and attenuates northward suggesting derivation from an arc developed along the Songma suture. Sandstone QFL compositions average 65/12/23% and plot in the recycled orogen field except for a few samples in the southern basin that fall in the dissected arc field. The compositions are consistent with derivation from Precambrian basement that includes orogenic complexes. In the southern basin, Middle Triassic turbidites contain greater lithics and feldspars and Lower Triassic turbidites have volcaniclastic composition consistent with derivation from a southerly arc. Our preferred interpretation is evolution from remnant basin to a large peripheral foreland with southward subduction and convergence with Indochina along the Songma suture. The previously proposed Dian‐Qiong zone is not a suture as its map location places it within carbonate platforms bounded by identical stratigraphy. The Nan‐Uttaradit zone is too distant to have provided voluminous siliciclastic flux to the basin. The Nanpanjiang Basin provides an example of the evolution of an exceptionally large foreland with far‐field rejuvenation of Precambrian uplifts and carbonate platforms that were significantly influenced by siliciclastic flux. The timing and pattern of turbidite basin fill impacted platform evolution by enabling margin progradation in areas proximal to siliciclastic sources, whereas platforms distant from sources were driven to aggradation and extreme relief with large‐scale gravitational sector collapse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号