首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4369篇
  免费   179篇
  国内免费   92篇
测绘学   158篇
大气科学   309篇
地球物理   1145篇
地质学   1528篇
海洋学   389篇
天文学   716篇
综合类   21篇
自然地理   374篇
  2022年   30篇
  2021年   47篇
  2020年   48篇
  2019年   64篇
  2018年   86篇
  2017年   105篇
  2016年   122篇
  2015年   111篇
  2014年   136篇
  2013年   264篇
  2012年   132篇
  2011年   232篇
  2010年   168篇
  2009年   234篇
  2008年   245篇
  2007年   218篇
  2006年   197篇
  2005年   174篇
  2004年   139篇
  2003年   166篇
  2002年   139篇
  2001年   86篇
  2000年   91篇
  1999年   63篇
  1998年   71篇
  1997年   59篇
  1996年   66篇
  1995年   55篇
  1994年   55篇
  1993年   43篇
  1992年   50篇
  1991年   43篇
  1990年   35篇
  1989年   37篇
  1988年   37篇
  1987年   41篇
  1986年   47篇
  1985年   60篇
  1984年   48篇
  1983年   51篇
  1982年   53篇
  1981年   59篇
  1980年   48篇
  1979年   39篇
  1978年   50篇
  1977年   28篇
  1976年   30篇
  1975年   25篇
  1974年   31篇
  1973年   29篇
排序方式: 共有4640条查询结果,搜索用时 15 毫秒
881.
Ten rare-earth elements (La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb and Lu) and Ta, Th and Hf contents in eight kimberlites and inclusions from Greenland and Zambia have been determined by instrumental neutron activation. All the samples have highly fractionated rare-earth (REE) distribution patterns. La/Yb ratios in the Greenland kimberlites (hypabyssal facies) vary from 111.8 to 188.4, and the total rare-earth contents range from 204.8 to 380.3 ppm. No europium anomaly is present. The Zambian kimberlites (diatreme facies) are altered and carbonated. Rare-earth patterns in these are also light REE-enriched. A significant difference is shown to exist between the diatreme and hypabyssal facies of kimberlites.  相似文献   
882.
Many chromite-rich rocks contain relatively high concentrations of the platinum-group elements (PGE). In many cases, the phases carrying PGE occur as either platinum-group minerals (PGM) or as base metal sulfides in solid solution in sulfides. In some cases, such as the UG-2 unit of the Bushveld Complex, the PGM are occluded inside chromite grains. Chromites are notably difficult to dissolve in most fluxes and if the chromite contains some PGM the possibility exists that not all the PGE will be recovered during fusion. In this work, shortcomings in published methods of analysis based on the nickel sulfide fire assay procedure were investigated and a new procedure developed based on the addition of sodium metaphosphate to the fusion mixture. Optimum composition of the fusion mixture was found to be 10 g sodium metaphosphate and 9 g silica to 10 g sample, 15 g sodium carbonate, 30 g lithium tetraborate, 7.5 g nickel and 4.5 g sulfur to achieve complete dissolution of chromite grains. The new flux mixture was evaluated by the analysis of reference material CHR-Pt+ (which is known to contain PGM inside chromite grains) and no undissolved chromite grains were found in the glassy slag. Analysis of the nickel sulfide beads from this fire assay using neutron activation analysis showed similar results for Rh and Ru when compared with published conventional true (or accepted) values, while Au, Ir, Os, Pd and Pt values determined here were 10 to 30% higher than the corresponding published conventional true values. It was concluded that the addition of sodium metaphosphate improved chromite dissolution in the flux and appears to improve PGE recovery.  相似文献   
883.
利用长江中下游、河口及口外、浙-闽沿岸陆架6个主要沉积盆地的40个晚第四纪钻孔及其年代学数据和长江口外、陆架的浅地层剖面,计算了全新世不同阶段各沉积盆地的沉积速率,并进行了近7 000年来泥沙堆积通量的估算。研究发现全新世早期距今10 000年至8 000年间长江口下切古河谷是长江泥沙的主要堆积中心,沉积速率可高达15m/ka。随着海平面上升,全新世中期长江中下游也成为长江泥沙的重要沉积盆地,其中江汉盆地的沉积速率可达10m/ka。近2 000年来,口外、陆架的堆积呈明显增加趋势,反映长江中下游盆地和河口可容空间日益减小。根据沉积速率估算,距今7 000年来长江中下游堆积泥沙约13 074×108 t,同期水下三角洲和陆架的泥沙堆积量约为9 470×108 t。研究还发现全新世以来有两个异常低沉积速率时期:距今8000-7 000年期间上述各沉积盆地沉积速率均显著低,未见长江泥沙的沉积中心; 距今4 000-2 000 年期间长江口呈现低沉积速率。 这两次异常的原因推测与海平面、气候波动事件密切相关。  相似文献   
884.
In this paper, a two-dimensional, vertically integrated hydrodynamic model is developed taking into account entrained air bubbles during storm surges as well as incorporating inverted barometer, and river and land dynamics. The model is specifically designed for the coastal region of Bangladesh. A nested scheme method with a fine mesh scheme (FMS), capable of incorporating the complex coastline and all major offshore islands accurately, nested into a coarse mesh scheme (CMS) covering up to 15° N latitude in the Bay of Bengal is used. To incorporate the small and big offshore islands in the Meghna estuarine region with its complex coastline accurately, a very fine mesh scheme (VFMS) is again nested into the FMS. Along the northeast corner of the VFMS, the Meghna river discharge is taken into account. The coastal and island boundaries are approximated through proper stair steps. The model equations are solved by a semi-implicit finite difference technique using a staggered C-grid. A stable appropriate tidal condition over the model domain is generated by applying tidal forcing with the four major tidal constituents M 2, S 2, K 1, and O 1 along the southern open boundary of the CMS. This tidal regime is introduced as the initial state of the sea for nonlinear interaction of tide and surge. The model is applied to simulate water levels due to the interaction of tide and surge associated with the cyclones April 1991 and Aila at different coastal and island locations along the coast of Bangladesh. The results are found to be quite satisfactory with root mean square error of ~0.50 m as calculated for both the storm events. Tests of sensitivities on water levels are carried out for air bubbles, offshore islands, river discharge, inverse barometer, and grid resolution. The presence of air bubbles increases simulated water levels a little bit in our model, and the contribution of air bubbles in increasing water level is found around 2 %. Further, water levels are found to be influenced by offshore islands, river discharge, inverse barometer as well as grid resolution.  相似文献   
885.
886.
利用树轮资料重建青海都兰地区过去1835年的气候变化   总被引:20,自引:6,他引:20  
根据青海都兰地区树木年轮样本,建立了上前我国最长的年轮年表序列(1835a),系 统地与所在地区气候资料进行了综合分析。通过响应函数计算得出,该年表对温度因子的反映更为第三一些。在响应面分析中发现,温度、降水与年轮宽度的关系呈现出随温度和降水的不同而不同。在温度低而降水量少的情况下,其线性相关性明显;但在温度较高和降水量较多时,树轮与两要素间的关系就显得不明显。另外,还对该年表玮秋季平均温度的关系进  相似文献   
887.
The room-temperature Raman spectra of aragonite, magnesite and dolomite have been recorded up to 30 GPa and 25 GPa, respectively and no phase changes were observed during compression, unlike calcite. The effect of temperature on the room-pressure Raman spectra of calcite, aragonite, magnesite and dolomite is reported up to 800–1100 K. The measured relative pressure and temperature-shifts of the Raman lines are greater for the lattice modes than for the internal modes of the CO3 groups. These shifts are used to calculate the mode anharmonic parameters of the observed Raman modes; they are negative and their absolute values are smaller (close to 0) for the internal CO3 modes than for the lattice modes (4–17 10?5 K?1). The temperature shifts of the lattice modes in calcite are considerably larger than those for dolomite and magnesite, and a marked non-linear increase in linewidth is observed above 400° C for calcite. This is consistent with an increasing relaxational component to the libration of the CO3 groups about their threefold axes, premonitory to the rotational order-disorder transition at higher temperature. This behaviour is not observed for the other calcite structured minerals in this study. We examine systematic variations in the lattice mode frequencies and linewidths with composition, to begin to understand these differences in their anharmonic behaviour. Finally, we have used a simple Debye-Waller model to calculate atomic displacements in calcite, magnesite and dolomite with increasing temperature from the vibrational frequency data, to provide a direct comparison with atomic positional data from high-temperature structure refinements.  相似文献   
888.
Diamonds have been discovered in mantle peridotites and chromitites of six ophiolitic massifs along the 1300 km‐long Yarlung‐Zangbo suture (Bai et al., 1993; Yang et al., 2014; Xu et al., 2015), and in the Dongqiao and Dingqing mantle peridotites of the Bangong‐Nujiang suture in the eastern Tethyan zone (Robinson et al., 2004; Xiong et al., 2018). Recently, in‐situ diamond, coesite and other UHP mineral have also been reported in the Nidar ophiolite of the western Yarlung‐Zangbo suture (Das et al., 2015, 2017). The above‐mentioned diamond‐bearing ophiolites represent remnants of the eastern Mesozoic Tethyan oceanic lithosphere. New publications show that diamonds also occur in chromitites in the Pozanti‐Karsanti ophiolite of Turkey, and in the Mirdita ophiolite of Albania in the western Tethyan zone (Lian et al., 2017; Xiong et al., 2017; Wu et al., 2018). Similar diamonds and associated minerals have also reported from Paleozoic ophiolitic chromitites of Central Asian Orogenic Belt of China and the Ray‐Iz ophiolite in the Polar Urals, Russia (Yang et al., 2015a, b; Tian et al., 2015; Huang et al, 2015). Importantly, in‐situ diamonds have been recovered in chromitites of both the Luobusa ophiolite in Tbet and the Ray‐Iz ophiolite in Russia (Yang et al., 2014, 2015a). The extensive occurrences of such ultra‐high pressure (UHP) minerals in many ophiolites suggest formation by similar geological events in different oceans and orogenic belts of different ages. Compared to diamonds from kimberlites and UHP metamorphic belts, micro‐diamonds from ophiolites present a new occurrence of diamond that requires significantly different physical and chemical conditions of formation in Earth's mantle. The forms of chromite and qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150‐380 km or even deeper in the mantle (Yang et al., 2007; Dobrthinetskaya et al., 2009). The very light C isotope composition (δ13C ‐18 to ‐28‰) of these ophiolitic diamonds and their Mn‐bearing mineral inclusions, as well as coesite and clinopyroxene lamallae in chromite grains all indicate recycling of ancient continental or oceanic crustal materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction (Yang et al., 2014, 2015a; Robinson et al., 2015; Moe et al., 2018). These new observations and new data strongly suggest that micro‐diamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. The in‐situ occurrence of micro‐diamonds has been well‐demonstrated by different groups of international researchers, along with other UHP minerals in podiform chromitites and ophiolitic peridotites clearly indicate their deep mantle origin and effectively address questions of possible contamination during sample processing and analytical work. The widespread occurrence of ophiolite‐hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in‐situ oceanic mantle. The fundamental scientific question to address here is how and where these micro‐diamonds and UHP minerals first crystallized, how they were incorporated into ophiolitic chromitites and peridotites and how they were preserved during transport to the surface. Thus, diamonds and UHP minerals in ophiolites have raised new scientific problems and opened a new window for geologists to study recycling from crust to deep mantle and back to the surface.  相似文献   
889.
Subduction-related Quaternary volcanic rocks from Solander and Little Solander Islands, south of mainland New Zealand, are porphyritic trachyandesites and andesites (58.20–62.19 wt% SiO2) with phenocrysts of amphibole, plagioclase and biotite. The Solander and Little Solander rocks are incompatible element enriched (e.g. Sr ~931–2,270 ppm, Ba ~619–798 ppm, Th ~8.7–21.4 ppm and La ~24.3–97.2 ppm) with MORB-like Sr and Nd isotopic signatures. Isotopically similar quench-textured enclaves reflect mixing with intermediate (basaltic-andesite) magmas. The Solander rocks have geochemical affinities with adakites (e.g. high Sr/Y and low Y), whose origin is often attributed to partial melting of subducted oceanic crust. Solander sits on isotopically distinct continental crust, thus excluding partial melting of the lower crust in the genesis of the magmas. Furthermore, the incompatible element enrichments of the Solander rocks are inconsistent with partial melting of newly underplated mafic lower crust; reproduction of their major element compositions would require unrealistically high degrees of partial melting. A similar argument precludes partial melting of the subducting oceanic crust and the inability to match the observed trace element patterns in the presence of residual garnet or plagioclase. Alternatively, an enriched end member of depleted MORB mantle source is inferred from Sr, Nd and Pb isotopic compositions, trace element enrichments and εHf ? 0 CHUR in detrital zircons, sourced from the volcanics. 10Be and Sr, Nd and Pb isotopic systematics are inconsistent with significant sediment involvement in the source region. The trace element enrichments and MORB-like Sr and Nd isotopic characteristics of the Solander rocks require a strong fractionation mechanism to impart the high incompatible element concentrations and subduction-related (e.g. high LILE/HFSE) geochemical signatures of the Solander magmas. Trace element modelling shows that this can be achieved by very low degrees of melting of a peridotitic source enriched by the addition of a slab-derived melt. Subsequent open-system fractionation, involving a key role for mafic magma recharge, resulted in the evolved andesitic adakites.  相似文献   
890.
深水沉积层序特点及构成要素   总被引:6,自引:0,他引:6  
蒋恕  王华  Paul  Weimer 《地球科学》2008,33(6):825-833
本文在回顾当前国际上深水沉积研究热点的基础上,结合在墨西哥湾深水研究的成果系统描述了深水沉积的定义、形成机理、深水沉积层序及深水沉积构成要素的特点.深水沉积主要是在重力流作用下深水环境的沉积,主要形成于相对水平面下降和早期上升的时期,主要分布在低位体系域中.深水层序以凝缩段为边界,块状搬运沉积最早形成并直接位于层序界面上,其上被河道-天然堤沉积所覆盖.典型深水沉积的要素主要由河道、天然堤及越岸沉积、板状砂、块状搬运沉积等构成,这些沉积要素时空上有序地分布.深水河道是物源的主要通道和沉积的重要场所,从上游至下游河道弯曲度增加,能量逐渐减弱.侧向迁移明显,垂向上由富砂的顺直河道演化为相对富泥的弯曲河道.天然堤及越岸沉积以泥质为主,天然堤沿河道呈楔状分布,其近端砂岩含量高,地层厚且倾角较陡;远端砂岩含量低,地层薄且平缓,侧向连续性好但垂向连续性差.板状砂主要为深水扇前缘非限制性沉积,可分为块型和层型.块型侧向连续性好,同时垂向连通性高.层型侧向连续性好,垂向连通性差.块状搬运沉积主要是低水位期坡上沉积物失稳形成的各类滑塌体及碎屑流,其对下伏地层侵蚀明显,分布广泛,变形构造常见,可作为油气良好的封盖层.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号