The thermodynamical and microphysical characteristics of monsoon clouds in the Poona, Bombay and Rihand regions were investigated using extensive aircraft in-cloud observations. The number of clouds sampled at Poona, Bombay and Rihand is 2199, 169 and 104 respectively. The temperatures inside the cloud are colder than its environment at Poona and Rihand. The maximum difference is about 3°C at the cloud base level and the difference decreased with height. At Bombay the difference is less than 1°C and at some levels the temperatures inside the cloud are warmer than its environment. The lapse rates of temperatures inside the cloud are slightly less than those in the immediate environment of the cloud. The environmental lapse rates are nearly equal to the saturated adiabatic value. The positive increments in liquid water content (LWC) are associated with the increments in temperature inside the cloud. Similarly positive increments in temperatures inside the cloud are associated with the increments in temperature of its immediate environment at the same level or the layer immediately above. The maximum cloud lengths observed at Poona and Bombay respectively are 14 and 3 km. The horizontal cross-section of LWC showed a maximum number of 13 peaks in clouds at Poona while only 7 peaks were observed at Bombay. The location of maximum LWC in the horizontal cross-section is more or less at the centre of the cloud. The LWC profile showed an increase with height from the base of the cloud at Poona and Bombay. There is no marked variation of LWC with height at Rihand. The total droplet concentration at different altitudes at Poona and Bombay is in the range 28–82 cm?3. The size distribution of cloud droplets experienced a broadening effect with increase in height from the cloud base at Poona. The broadening effect at Bombay is not as marked as that at Poona. 相似文献
This paper presents the computation of time series of the 22 July 2007 M 4.9 Kharsali earthquake. It occurred close to the Main Central Thrust (MCT) where seismic gap exists. The main shock and 17 aftershocks were located by closely spaced eleven seismograph stations in a network that involved VSAT based real-time seismic monitoring. The largest aftershock of M 3.5 and other aftershocks occurred within a small volume of 4 × 4 km horizontal extent and between depths of 10 and 14 km. The values of seismic moment (M∘) determined using P-wave spectra and Brune’s model based on f2 spectral shape ranges from 1018 to 1023 dyne-cm. The initial aftershocks occurred at greater depth compared to the later aftershocks. The time series of ground motion have been computed for recording sites using geometric ray theory and Green’s function approach. The method for computing time series consists in integrating the far-field contributions of Green’s function for a number of distributed point source. The generated waveforms have been compared with the observed ones. It has been inferred that the Kharsali earthquake occurred due to a northerly dipping low angle thrust fault at a depth of 14 km taking strike N279°E, dip 14° and rake 117°. There are two regions on the fault surface which have larger slip amplitudes (asperities) and the rupture which has been considered as circular in nature initiated from the asperity at a greater depth shifting gradually upwards. The two asperities cover only 10% of the total area of the causative fault plane. However, detailed seismic imaging of these two asperities can be corroborated with structural heterogeneities associated with causative fault to understand how seismogenesis is influenced by strong or weak structural barriers in the region. 相似文献
In this paper we discuss the main petrogenetic models for granitic pegmatites and how these models have evolved over time. We suggest that the present state of knowledge requires that some aspects of these models to be modified, or absorbed into newer ones. Pegmatite formation and internal evolution have long supposed the need for highly water- and flux-enriched magmas to explain the differences between pegmatites and other intrusives of similar major element composition. Compositions and textural characteristics of fluid and melt inclusions in pegmatite minerals provide strong evidence for such magmas. Furthermore, we show that melt inclusion research has increased the number of potential flux components, which may include H2O, OH?, CO2, HCO3?, CO32?, SO42?, PO43?, H3BO3, F , and Cl, as well as the elements Li, Na, K, Rb, Cs, and Be, herein described as melt structure modifiers. In this paper we emphasize that the combined effect which these components have on the properties of pegmatite melts is difficult to deduce from experimental studies using only a limited number of these components. The combination and the amount of the different magmatic species, together with differences in the source region, and variations in pressure and temperature cause the great diversity of the pegmatites observed. Some volatile species, such as CO32? and alkalis, have the capacity to increase the solubility of H2O in silicate melt to an extraordinary degree, to the extent that melt-melt-fluid immiscibility becomes inevitable. It is our view that the formation of pegmatites is connected with the complex interplay of many factors. 相似文献
At a large industrial facility, methyl tert‐butyl ether (MTBE) was released to the subsurface and dispersed into the light, non‐aqueous phase liquids (LNAPL), in the first aquifer, with the LNAPL serving as a continuous source of MTBE in groundwater. Compound‐specific isotope analysis was conducted on both MTBE and tert‐butyl alcohol (TBA) in groundwater samples collected in 2008, 2011, and 2013 from wells located along and off the center line of the MTBE plume. The study demonstrated the onset and progress of biodegradation of MTBE between 2008 and 2013. The TBA observed in 2008 appears to be derived only in part from MTBE transformation while a significant portion of TBA might be contributed directly from LNAPL sources. In 2011 to 2013, the dominant source of TBA in the mid‐gradient plume was MTBE transformation. A contribution of an offsite LNAPL source, in particular to the down‐gradient area of the plume, is possible but could not be unequivocally confirmed. The time series provided direct evidence for MTBE biodegradation, but also a valuable insight on the sources of TBA. 相似文献
Structural changes and surface oxidation state were examined following the reaction of hematite (0 0 1), (0 1 2), and (1 1 0) with aqueous Fe(II). X-ray reflectivity measurements indicated that Fe(II) induces changes in the structure of all three surfaces under both acidic (pH 3) and neutral (pH 7) conditions. The structural changes were generally independent of pH although the extent of surface transformation varied slightly between acidic and neutral conditions; no systematic trends with pH were observed. Induced changes on the (1 1 0) and (0 1 2) surfaces include the addition or removal of partial surface layers consistent with either growth or dissolution. In contrast, a <1 nm thick, discontinuous film formed on the (0 0 1) surface that appears to be epitaxial yet is not a perfect extension of the underlying hematite lattice, being either structurally defective, compositionally distinct, or nanoscale in size and highly relaxed. Resonant anomalous X-ray reflectivity measurements determined that the surface concentration of Fe(II) present after reaction at pH 7 was below the detection limit of approximately 0.5-1 μmol/m2 on all surfaces. These observations are consistent with Fe(II) oxidative adsorption, whereby adsorbed Fe(II) is oxidized by structural Fe(III) in the hematite lattice, with the extent of this reaction controlled by surface structure at the atomic scale. The observed surface transformations at pH 3 show that Fe(II) oxidatively adsorbs on hematite surfaces at pH values where little net adsorption occurs, based on historical macroscopic Fe(II) adsorption behavior on fine-grained hematite powders. This suggests that Fe(II) plays a catalytic role, in which an electron from an adsorbed Fe(II) migrates to and reduces a lattice Fe(III) cation elsewhere, which subsequently desorbs in a scenario with zero net reduction and zero net adsorption. Given the general pH-independence and substantial mass transfer involved, this electron and atom exchange process appears to be a significant subsystem within macroscopic pH-dependent Fe(II) adsorption. 相似文献
Igneous and sedimentary rocks recently dredged and cored from the steep western slope of the Beata Ridge provide important data on the composition, age and details of crustal evolution of the rock-types responsible for recorded compressional wave velocities. The sedimentary rock samples also provide new data concerning the age and depositional environment of overlying sedimentary reflectors.
The deepest (4,100 m) dredge haul contains deeply weathered coarsegrained igneous rocks. Nine other hauls, distributed between 4,000–2,300 m, contain holocrystalline basalts and diabases. The compressional wave velocity of air-dried samples of two holocrystalline basalts and a diabase at atmospheric pressure ranges from 5.0–5.6 km/sec. Sampling in depths less than 2,300 m shows that the crest of the Beata Ridge is capped by Quaternary deposits underlain by consolidated carbonate sediment of at least Middle Eocene age. The faunal assemblages of the Mid-Eocene samples are the product of normal accumulation in a shallow shelf environment.
The dredging results coupled with previously published seismic reflection and refraction data, suggest that the 5.4–5.7 km/sec crust is composed of a layer of basalt and diabase which outcrops below 2,300 m, on a fault-generated escarpment that was produced in the Late Cretaceous-Early Tertiary. The shallow shelf samples of Eocene age indicate that the Beata Ridge was higher in the Early Tertiary and has subsided subsequently to its present depth. 相似文献
This study examined the impacts of reservoir properties on carbon dioxide (CO2) migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as spatial–temporal distributions of gas pressure, which can be reasonably monitored in practice. The injection reservoir was assumed to be located 1,400–1,500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of the domain, which extended out 8,000 m from the injection well. The CO2 migration was simulated using the latest version of the simulator, subsurface transport over multiple phases (the water–salt–CO2–energy module), developed by Pacific Northwest National Laboratory. A nonlinear parameter estimation and optimization modeling software package, Parameter ESTimation (PEST), is adopted for automated reservoir parameter estimation. The effects of data quality, data worth, and data redundancy were explored regarding the detectability of reservoir parameters using gas pressure monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy. The feasibility of using CO2 saturation data for improving reservoir characterization was also discussed. 相似文献
A photogrammetric and sediment analysis is presented to illustrate the relationship between beach erosion and seacliff recession on Thompson Island, Boston Harbor, Massachusetts. Aerial photographs taken in 1938, 1952, 1963, and 1977 were measured to determine rates of shoreline change around the island. The 39-year average rate of beach erosion is 0.3 m/yr ± 2% with an average rate of cliff recession at 0.2 m/yr ± 2%. Rates of beach erosion between six orientations that reflect principal wave approach to the island were not found to be significantly different (0.05) for the 39-year period. The rank order correlation between beach erosion and cliff recession for these six orientations was moderately well correlated (0.63). To determine possible controls of cliff erosion, 58 sediment samples were collected from glacial cliffs along the shoreline. The textural composition was determined, and then tested with discriminant function analysis. Partial correlation analysis between beach erosion and cliff recession holding a surrogate for sediment size constant improved the rank order from 0.63 to 0.84. The results indicate that coarser-grained cliffs recede at faster rates, but with less erosion occurring on adjacent beaches. Alternatively, finer-grained cliffs recede at slower rates, but with greater erosion occurring on adjacent beaches. 相似文献
For the period September 1978 to December 1982 we have identified 55 solar flare particle events for which our instruments on board the ISEE-3 (ICE) spacecraft detected electrons above 10 MeV. Combining our data with those from the ULEWAT spectrometer (MPI Garching and University of Maryland) electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (<1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (<1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops. 相似文献