首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7129篇
  免费   93篇
  国内免费   126篇
测绘学   272篇
大气科学   747篇
地球物理   1910篇
地质学   2850篇
海洋学   471篇
天文学   640篇
综合类   185篇
自然地理   273篇
  2023年   9篇
  2022年   5篇
  2021年   29篇
  2020年   24篇
  2019年   23篇
  2018年   743篇
  2017年   645篇
  2016年   350篇
  2015年   218篇
  2014年   201篇
  2013年   162篇
  2012年   353篇
  2011年   272篇
  2010年   91篇
  2009年   130篇
  2008年   126篇
  2007年   84篇
  2006年   99篇
  2005年   1089篇
  2004年   1295篇
  2003年   878篇
  2002年   153篇
  2001年   28篇
  2000年   22篇
  1999年   24篇
  1998年   21篇
  1997年   19篇
  1996年   28篇
  1995年   20篇
  1994年   14篇
  1993年   3篇
  1992年   20篇
  1991年   5篇
  1990年   9篇
  1989年   9篇
  1988年   11篇
  1987年   11篇
  1986年   7篇
  1985年   12篇
  1984年   14篇
  1983年   13篇
  1982年   15篇
  1981年   10篇
  1980年   13篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
  1973年   2篇
排序方式: 共有7348条查询结果,搜索用时 765 毫秒
981.
Alluvial and colluvial gem sapphires are common in the basaltic fields of the French Massif Central (FMC) but sapphire-bearing xenoliths are very rare, found only in the Menet trachytic cone in Cantal. The O-isotope composition of the sapphires ranges between 4.4 and 13.9‰. Two distinct groups have been defined: the first with a restricted isotopic range between 4.4 and 6.8‰ (n = 22; mean δ18O = 5.6 ± 0.7‰), falls within the worldwide range defined for blue-green-yellow sapphires related to basaltic gem fields (3.0 < δ18O < 8.2‰, n = 150), and overlaps the ranges defined for magmatic sapphires in syenite (4.4 < δ18O < 8.3‰, n = 29). A second group, with an isotopic range between 7.6 and 13.9‰ (n = 9), suggests a metamorphic sapphire source such as biotite schist in gneisses or skarns. The δ18O values of 4.4–4.5‰ for the blue sapphire-bearing anorthoclasite xenolith from Menet is lower than the δ18O values obtained for anorthoclase (7.7–7.9‰), but suggest that these sapphires were derived from an igneous reservoir in the subcontinental spinel lherzolitic mantle of the FMC. The presence of inclusions of columbite-group minerals, pyrochlore, Nb-bearing rutile, and thorite in these sapphires provides an additional argument for a magmatic origin. In the FMC lithospheric mantle, felsic melts crystallized to form anorthoclasites, the most evolved peraluminous variant of the alkaline basaltic melt. The O-isotopic compositions of the first group suggests that these sapphires crystallized from felsic magmas under upper mantle conditions. The second group of isotopic values, typified for example by the Le Bras sapphire with a δ18O of 13.9‰, indicates that metamorphic sapphires from granulites were transported to the surface by basaltic magma.  相似文献   
982.
The Ibituruna quartz-syenite was emplaced as a sill in the Ribeira-Araçuaí Neoproterozoic belt (Southeastern Brazil) during the last stages of the Gondwana supercontinent amalgamation. We have measured the Anisotropy of Magnetic Susceptibility (AMS) in samples from the Ibituruna sill to unravel its magnetic fabric that is regarded as a proxy for its magmatic fabric. A large magnetic anisotropy, dominantly due to magnetite, and a consistent magnetic fabric have been determined over the entire Ibituruna massif. The magmatic foliation and lineation are strikingly parallel to the solid-state mylonitic foliation and lineation measured in the country-rock. Altogether, these observations suggest that the Ibituruna sill was emplaced during the high temperature (~ 750 °C) regional deformation and was deformed before full solidification coherently with its country-rock. Unexpectedly, geochronological data suggest a rather different conclusion. LA-ICP-MS and SHRIMP ages of zircons from the Ibituruna quartz-syenite are in the range 530–535 Ma and LA-ICP-MS ages of zircons and monazites from synkinematic leucocratic veins in the country-rocks suggest a crystallization at ~ 570–580 Ma, i.e., an HT deformation > 35My older than the emplacement of the Ibituruna quartz-syenite. Conclusions from the structural and the geochronological studies are therefore conflicting. A possible explanation arises from 40Ar–39Ar thermochronology. We have dated amphiboles from the quartz-syenite, and amphiboles and biotites from the country-rock. Together with the ages of monazites and zircons in the country-rock, 40Ar–39Ar mineral ages suggest a very low cooling rate: < 3 °C/My between 570 and ~ 500 Ma and ~ 5 °C/My between 500 and 460 Ma. Assuming a protracted regional deformation consistent over tens of My, under such stable thermal conditions the fabric and microstructure of deformed rocks may remain almost unchanged even if they underwent and recorded strain pulses separated by long periods of time. This may be a characteristic of slow cooling “hot orogens” that rocks deformed at significantly different periods during the orogeny, but under roughly unchanged temperature conditions, may display almost indiscernible microstructure and fabric.  相似文献   
983.
984.
Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO2 polymorphs, and GeO2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}), but it varies as a function of structure (coesite ε = 214,000 ± 14,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}; stishovite ε = 485,000 ± 109,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.  相似文献   
985.
We present here a numerical modelling study of dislocations in perovskite CaTiO3. The dislocation core structures and properties are calculated through the Peierls–Nabarro model using the generalized stacking fault (GSF) results as a starting model. The GSF are determined from first-principles calculations using the VASP code. The dislocation properties such as collinear, planar core spreading and Peierls stresses are determined for the following slip systems: [100](010), [100](001), [010](100), [010](001), [001](100), [001](010), and All dislocations exhibit lattice friction, but glide appears to be easier for [100](010) and [010](100). [001](010) and [001](100) exhibit collinear dissociation. Comparing Peierls stresses among tausonite (SrTiO3), perovskite (CaTiO3) and MgSiO3 perovskite demonstrates the strong influence of orthorhombic distortions on lattice friction. However, and despite some quantitative differences, CaTiO3 appears to be a satisfactory analogue material for MgSiO3 perovskite as far as dislocation glide is concerned.  相似文献   
986.
We report the algorithms used in the software of the upgraded SBG camera. Fast-moving satellites are observed in the “rotated” coordinate system where one of the axes points towards the pole of the object’s orbit. The ephemeris for this coordinate system is computed based on the ephemeris for the equatorial coordinate system using special transition matrices. The parameters of the matrices are the coordinates of the orbital pole, which are found by averaging the vector products of the radius vectors of the consecutive positions of the satellite. The position angle of the image is computed as the difference between the hour angles of the orbital and celestial poles in the coordinate system, the pole of which coincides with the optical center of the frame. The speed of object tracking is computed via quadratic interpolation of the ephemeris in the “rotated” coordinate system.  相似文献   
987.
A thin gaseous disk with a nearly Keplerian rotation profile and free boundaries in the external gravitational field of a point gravitating object does not generate any growing perturbation eigenmodes. In spite of this, a significant transient growth of linear perturbations measured by the evolution of their total acoustic energy is possible in such a disk. This is shown within the framework of the simplest model of an inviscid polytropic thin disk with a finite radial extent in which small adiabatic perturbations that are a linear combination of neutral eigenmodes with a corotation radius beyond the outer flow boundary are considered.  相似文献   
988.
Stars form within molecular clouds but our understanding of this fundamental process remains hampered by the complexity of the physics that drives their evolution. We review our observational and theoretical knowledge of molecular clouds trying to confront the two approaches wherever possible. After a broad presentation of the cold interstellar medium and molecular clouds, we emphasize the dynamical processes with special focus to turbulence and its impact on cloud evolution. We then review our knowledge of the velocity, density and magnetic fields. We end by openings towards new chemistry models and the links between molecular cloud structure and star-formation rates.  相似文献   
989.
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties.We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration.We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.  相似文献   
990.
Water bodies in Tanzania are experiencing increased siltation, which is threatening water quality, ecosystem health, and livelihood security in the region. This phenomenon is caused by increasing rates of upstream soil erosion and downstream sediment transport. However, a lack of knowledge on the contributions from different catchment zones, land-use types, and dominant erosion processes, to the transported sediment is undermining the mitigation of soil degradation at the source of the problem. In this context, complementary sediment source tracing techniques were applied in three Tanzanian river systems to further the understanding of the complex dynamics of soil erosion and sediment transport in the region. Analysis of the geochemical and biochemical fingerprints revealed a highly complex and variable soil system that could be grouped in distinct classes. These soil classes were unmixed against riverine sediment fingerprints using the Bayesian MixSIAR model, yielding proportionate source contributions for each catchment. This sediment source tracing indicated that hillslope erosion on the open rangelands and maize croplands in the mid-zone contributed over 75% of the transported sediment load in all three river systems during the sampling time-period. By integrating geochemical and biochemical fingerprints in sediment source tracing techniques, this study demonstrated links between land use, soil erosion and downstream sediment transport in Tanzania. This evidence can guide land managers in designing targeted interventions that safeguard both soil health and water quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号