首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7129篇
  免费   93篇
  国内免费   126篇
测绘学   272篇
大气科学   747篇
地球物理   1910篇
地质学   2850篇
海洋学   471篇
天文学   640篇
综合类   185篇
自然地理   273篇
  2023年   9篇
  2022年   5篇
  2021年   29篇
  2020年   24篇
  2019年   23篇
  2018年   743篇
  2017年   645篇
  2016年   350篇
  2015年   218篇
  2014年   201篇
  2013年   162篇
  2012年   353篇
  2011年   272篇
  2010年   91篇
  2009年   130篇
  2008年   126篇
  2007年   84篇
  2006年   99篇
  2005年   1089篇
  2004年   1295篇
  2003年   878篇
  2002年   153篇
  2001年   28篇
  2000年   22篇
  1999年   24篇
  1998年   21篇
  1997年   19篇
  1996年   28篇
  1995年   20篇
  1994年   14篇
  1993年   3篇
  1992年   20篇
  1991年   5篇
  1990年   9篇
  1989年   9篇
  1988年   11篇
  1987年   11篇
  1986年   7篇
  1985年   12篇
  1984年   14篇
  1983年   13篇
  1982年   15篇
  1981年   10篇
  1980年   13篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
  1973年   2篇
排序方式: 共有7348条查询结果,搜索用时 156 毫秒
821.
The mud volcanoes of Pakistan   总被引:1,自引:0,他引:1  
Marine-geologic investigations on the Arabian Sea by Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) in 1995 and 1998, and land expeditions in 1998 and 1999 to the coastal regions of the Makran Desert/Pakistan have extended the knowledge of the aerial distribution of mud volcanoes. These structures rise from under-compacted formations within the regional accretionary prism, which is built by the subduction of the oceanic crust of the Arabian Sea and its km-thick sedimentary load. The occurrence of mud volcanoes is limited to the abyssal plain near the accretionary front, to the coastal region of the Makran Desert and to a region in the interior of the Desert to the south to southeast of the so-called Hinglay Synform. The location of mud volcanoes in Pakistan is clearly tied to fault systems. Mud volcanoes are conspicuously absent on the lower slope of the accretionary prism, where thick gas hydrate layers have developed. The presence of large gas plumes emerging from the seafloor landward of the gas hydrate stability zone at water depths of less than 800 m points to a redirection of fluids from depth, which might explain the absence of mud volcanoes along the lower slope.  相似文献   
822.
Total concentrations of 13 elements (K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Rb, Sr, Y, Zr, Pb) in the size-fractionated Sava River sediments upstream and downstream of the Krsko nuclear power plant together with metal speciation within bulk sediment have been investigated. Trace metals generally increase with decreasing particle size, however, because of entrapment of organic matter in the 0.63–1 mm fraction, concentrations in the coarser sediment fraction are higher than expected. Exchangeable Pb, Zn, Cu, Mn, Cr and Fe are generally found to represent a negligible fraction of the total metal concentration of the bulk sediment. Seasonal variations of the Pb, Zn and Cu concentrations in the <0.5 mm fraction reflect decreased values during the spring period. Heavy metal concentrations in the 2003 waste water discharges from the Krsko nuclear power plant released into the Sava River were much lower than their maximum allowed values. Combined rubidium and organic matter normalization of the Zn, Pb and Cu concentrations, which was applied on the minus 0.063 mm fraction, indicated three potential sources of contaminants.  相似文献   
823.
Geochemical investigations of the slip zones of a landslide in granitic saprolite revealed that they have signatures distinct from their host materials. These distinctions include stronger Si depletion, higher Al enrichment, greater LOI, significant fixations of Mn, Ba and Ce, stronger negative Eu anomalies, and greater accumulations of other rare earth elements (REE). Altogether, these geochemical characteristics indicate that: (a) the slip zones have greater abundance of clays, consistent with field and microscopic observations; (b) concentration of clay size particles within the slip zones may have been from downward leaching and deposition, and lateral transportation of Al-Si solutions and colloids through pores and fractures within the saprolite; and (c) there were prevailing oxidation and poor drainage, and occasional reduction conditions within the slip zones. It was concluded that geochemical analyses could be effective in gathering clues for understanding the development and nature of slip zones in landslide investigations.  相似文献   
824.
A barium anomaly with a maximum Ba2+ concentration of 6.37 mg/l was distinguished in a Cambrian-Vendian (Cm-V) aquifer system that is widely used as a drinking water source in the towns Kunda, Rakvere and Kohtla-Järve of North-Estonia. The modelling results show that at low sulphate concentrations (below 3 mg/l) Ba2+ contents can exceed the limit values for drinking water (such as 2 mg/l set by US EPA). Bicarbonate ions in their common concentration range in groundwater cannot limit Ba2+ at its content below 10 mg/l. The probable natural sources of the anomaly are the crystalline basement and its weathering zone. Groundwater in the clayey weathering core is hydraulically connected with the overlying Cm-V aquifer system, thus the upconing of deeper-seated groundwater, caused by intensive exploitation of wells, is possible.  相似文献   
825.
In zones washed by rain (façades, pinnacles, pilasters), fine siliceous sandstones are covered by a black varnish, which gives a dirty appearance to monuments. In composition, structure and areas covered by it, it differs from the usual black gypsum crust. Experiments carried out on blocks covered by black varnish show the modifications due to their growth. Results show that despite their low thickness and the coherence of the stone below, the accumulation of hydrophobic matters and the wetting-drying cycles modify the transfer properties of sandstones several centimeters below the surface. Thus, although sandstones seem to be protected by the black varnish, in the long run, a flake detachment process, in the areas covered by it, affects them. Therefore, damage to sandstones by black varnish can be explained by the fact that a wetting and drying cycle modifies the pore network.  相似文献   
826.
Relatively strongly magnetic fine components (< 30μm, XS-4J and DS-4J) which are most environmentally sensitive were separated from layer S5-1 in the Xifeng and Duanjiapo loess sections and analyzed by MPV-3 for their morphometric characteristics and reflectance, SEM-ESD for their element contents and XRD for their mineral phases, respectively. The results showed that minerals in both samples are dominated by detrial Fe-Ti oxides of aeolian origin. In sample XS-4J the reflectance and iron contents of magnetic minerals are usually high. In addition to magnetite (Fe3O4), maghemite (γFe2O3) and hematite (Fe2O3), some Fe-high oxide (72.25 wt%–86.67 wt%), ilmenite (FeTiO3), and magnetite-ulvöspinel [Fe(FeCr)O4, Fe (FeNi)O4] were also detected. In sample DS-4J obvious negative linear correlations were found between Ti and Fe, and the contents of Mn, Si, Al and Ca are usually high and the minerals are dominated by magnetite (maghemite), goethite (FeOOH) and limonite (containing Si and OH). In addition, the signs of corrosion of magnetic minerals and newly crystallized magnetite (maghemite) were recognized. Differences in the composition and assemblage characteristics of magnetite minerals between XS and DS reflect significant differences in source rocks and preserving conditions.  相似文献   
827.
Ellipsoidal geoid computation   总被引:1,自引:1,他引:0  
Modern geoid computation uses a global gravity model, such as EGM96, as a third component in a remove–restore process. The classical approach uses only two: the reference ellipsoid and a geometrical model representing the topography. The rationale for all three components is reviewed, drawing attention to the much smaller precision now needed when transforming residual gravity anomalies. It is shown that all ellipsoidal effects needed for geoid computation with millimetric accuracy are automatically included provided that the free air anomaly and geoid are calculated correctly from the global model. Both must be consistent with an ellipsoidal Earth and with the treatment of observed gravity data. Further ellipsoidal corrections are then negligible. Precise formulae are developed for the geoid height and the free air anomaly using a global gravity model, given as spherical harmonic coefficients. Although only linear in the anomalous potential, these formulae are otherwise exact for an ellipsoidal reference Earth—they involve closed analytical functions of the eccentricity (and the Earths spin rate), rather than a truncated power series in e2. They are evaluated using EGM96 and give ellipsoidal corrections to the conventional free air anomaly ranging from –0.84 to +1.14 mGal, both extremes occurring in Tibet. The geoid error corresponding to these differences is dominated by longer wavelengths, so extrema occur elsewhere, rising to +766 mm south of India and falling to –594 mm over New Guinea. At short wavelengths, the difference between ellipsoidal corrections based only on EGM96 and those derived from detailed local gravity data for the North Sea geoid GEONZ97 has a standard deviation of only 3.3 mm. However, the long-wavelength components missed by the local computation reach 300 mm and have a significant slope. In Australia, for example, such a slope would amount to a 600-mm rise from Perth to Cairns.  相似文献   
828.
Using a Love number formalism, the elastic deformations of the mantle and the mass redistribution gravitational potential within the Earth induced by the fluid pressure acting at the core–mantle boundary (CMB) are computed. This pressure field changes at a decadal time scale and may be estimated from observations of the surface magnetic field and its secular variation. First, using a spherical harmonic expansion, the poloidal and toroidal part of the fluid velocity field at the CMB for the last 40 years is computed, under the hypothesis of tangential geostrophy. Then the associated geostrophic pressure, whose order of magnitude is about 1000 Pa, is computed. The surface topography induced by this pressure field is computed using Love numbers, and is a few millimetres. The mass redistribution gravitational potential induced by these deformations and, in particular, the zonal components of the related surface gravitational potential perturbation (J2, J3 and J4 coefficients), are calculated. Overall perturbations for the J2 coefficient of about 10–10, for J3 of about 10–11 and for J4 are found of about 0.3×10–11. Finally, these theoretical results are compared with recent observations of the decadal variation of J2 from satellite laser ranging. Results concerning J2 can be described as follows: first, they are one order of magnitude too small to explain the observed decadal variation of J2 and, second, they show a significant linear trend over the last 40 years, whose rate of decrease amounts to 7% of the observed value.  相似文献   
829.
830.
Surveying co-located space-geodetic instruments for ITRF computation   总被引:2,自引:2,他引:0  
A new and comprehensive method is presented that can be used for estimating eccentricity vectors between global positioning system (GPS) antennas, doppler orbitography and radiopositioning integrated by satellites (DORIS) antennas, azimuth-elevation (AZ-EL) very long baseline interferometry (VLBI) telescopes, and satellite laser ranging (SLR) and lunar laser ranging (LLR) telescopes. The problem of reference point (RP) definition for these space-geodetic instruments is addressed and computed using terrestrial triangulation and electronic distance measurement (EDM) trilateration. The practical ground operations, the surveying approach and the terrestrial data processing are briefly illustrated, and the post-processing procedure is discussed. It is a geometrically based analytical approach that allows computation of RPs along with a rigorous statistical treatment of measurements. The tight connection between the geometrical model and the surveying procedure is emphasized. The computation of the eccentricity vector and the associated variance–covariance matrix between an AZ-EL VLBI telescope (with or without intersecting axes) and a GPS choke ring antenna is concentrated upon, since these are fundamental for computing the International Terrestrial Reference Frame (ITRF). An extension to RP computation and eccentricity vectors involving DORIS, SLR and LLR techniques is also presented. Numerical examples of the quality that can be reached using the authors approach are given. Working data sets were acquired in the years 2001 and 2002 at the radioastronomical observatory of Medicina (Italy), and have been used to estimate two VLBI-GPS eccentricity vectors and the corresponding SINEX files.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号