首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   25篇
  国内免费   2篇
测绘学   13篇
大气科学   42篇
地球物理   140篇
地质学   161篇
海洋学   90篇
天文学   56篇
综合类   5篇
自然地理   56篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   9篇
  2017年   12篇
  2016年   18篇
  2015年   18篇
  2014年   21篇
  2013年   36篇
  2012年   18篇
  2011年   20篇
  2010年   27篇
  2009年   30篇
  2008年   47篇
  2007年   28篇
  2006年   20篇
  2005年   15篇
  2004年   21篇
  2003年   13篇
  2002年   21篇
  2001年   11篇
  2000年   16篇
  1999年   7篇
  1998年   7篇
  1997年   2篇
  1996年   9篇
  1995年   10篇
  1994年   7篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1983年   8篇
  1982年   14篇
  1981年   12篇
  1980年   8篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1968年   1篇
  1967年   1篇
排序方式: 共有563条查询结果,搜索用时 15 毫秒
111.
While earthquakes generate about 90% of all tsunamis, volcanic activity, landslides, explosions, and other nonseismic phenomena can also result in tsunamis. There have been 53 000 reported deaths as a result of tsunamis generated by landslides and volcanoes. No death tolls are available for many events, but reports indicate that villages, islands, and even entire civilizations have disappeared. Some of the highest tsunami wave heights ever observed were produced by landslides. In the National Geophysical Data Center world-wide tsunami database, there are nearly 200 tsunami events in which nonseismic phenomena played a major role. In this paper, we briefly discuss a variety of nonseismic phenomena that can result in tsunamis. We discuss the magnitude of the disasters that have resulted from such events, and we discuss the potential for reducing such disasters by education and warning systems.  相似文献   
112.
We analyze the ground motion time histories due to the local seismicity near the Itoiz reservoir to estimate the near-source, surface 3D displacement gradients and dynamic deformations. The seismic data were obtained by a semipermanent broadband and accelerometric network located on surface and at underground sites. The dynamic deformation field was calculated by two different methodologies: first, by the seismo-geodetic method using the data from a three-station microarray located close to the dam, and second, by single station estimates of the displacement gradients. The dynamic deformations obtained from both methods were compared and analyzed in the context of the local free-field effects. The shallow 1D velocity structure was estimated from the seismic data by modeling the body wave travel times. Time histories obtained from both methods result quite similar in the time window of body wave arrivals. The strain misfits between methods vary from 1.4 to 35.0 % and rotational misfits vary from 2.5 to 36.0 %. Amplitudes of displacement gradients vary in the range of 10?8 to 10?7 strains. From these results, a new scaling analysis by numerical modeling is proposed in order to estimate the peak dynamic deformations for different magnitudes, up to the expected maximum M w in the region (M5.5). Peak dynamic deformations due to local M w5.5 earthquakes would reach amplitudes of 10?5 strain and 10?3 radians at the Itoiz dam. The single station method shows to be an adequate option for the analysis of local seismicity, where few three-component stations are available. The results obtained here could help to extend the applicability of these methodologies to other sites of engineering interest.  相似文献   
113.
The change in the global mean atmospheric pressure between glacial and interglacial periods is evaluated at sea level. This change originates in a modification of topography and in a possible variation in the atmospheric mass. In this calculation the atmosphere is at hydrostatic equilibrium, and the parameters describing the glacial period are varied in a plausible range. The result, with constant atmospheric mass, is a mean sea level pressure decrease of 9–15 hPa linked with the deglaciation. The corresponding pressure change at the reference level corresponding to the present day sea level does not exceed one hPa. When considering only the change in the atmospheric mass, an increase which does not exceed 2 hPa is found, linked with the deglaciation.  相似文献   
114.
Based on terrestrial gravity data, in this paper we prepared a map of Bouguer anomalies, which was filtered to separate shallow and deep gravity sources. Based on a density model and gravimetric inversion techniques, the discontinuous crust-mantle boundary and the top of crystalline basement were modeled. Subsequently, the equivalent elastic thickness (Te) was evaluated, considering information from the crust-mantle discontinuity and topographic load, finding high Te values in the eastern Andean foothills and west of the Velasco range. These results are consistent with the positive isostatic and residual Bouguer anomaly values, which suggest the presence of high-density rocks in the mid-to upper crust. In addition, petrographic and geochemical analysis conducted in surface outcrops suggest a mantle origin.  相似文献   
115.
The morphology, swimming behaviour, settlement preferences and behaviour of five species of Demospongiae are described. The sponges, Haliclona sp., Microciona coccinea, Ophlitaspongia seriata, Mycale macilenta, and Halichondria moorei, are all common in the intertidal region in the north of New Zealand. The view is put forward that larval behaviour must be interpreted in terms of the known ecological situation of the adult sponge.  相似文献   
116.
Kettle ponds in the Cape Cod National Seashore in southeastern Massachusetts differ in their evolution due to depth of the original ice block, the clay content of outwash in their drainage basins, and their siting in relation to geomorphic changes caused by sea-level rise, barrier beach formation, and saltmarsh development. Stratigraphic records of microfossil, carbon isotope, and sediment changes also document late-glacial and Holocene climatic changes.The ponds are separated into 3 groups, each of which follow different development scenarios. Group I ponds date from the late-glacial. They formed in clay-rich outwash, have perched aquifers and continuous lake sediment deposition. The earliest pollen and macrofossil assemblages in Group I pond sediments suggest tundra and spruce-willow parklands before 12 000 yr B.P., boreal forest between 12 000 and 10 500 yr B.P., bog/heath initiation and expansion during the Younger Dryas between 11 000 and 10 000 yr B.P., northern conifer forest between 10 500 and 9500 yr B.P., and establishment of the Cape oak and pitch pine barrens vegetation after 9500 yr B.P. Sedimentation rate changes suggest lowered freshwater levels between 9000 and 5000 yr B.P. caused by decreased precipitation on the Atlantic Coastal Plain. Lake sediment deposition began in the middle Holocene in Group II ponds which formed in clay-poor outwash. These ponds date from about 6000-5000 yr B.P. In these ponds sediment deposition began as sea level rose and the freshwater lens intersected the dry basins. The basal radiocarbon dates of these ponds and stable carbon isotope analyses of the pond sediments suggest a sea-level curve for Cape Cod Bay. Holocene topographic changes in upland and the landscape surrounding the ponds is reconstructed for this coastal area.Group III ponds in the late Holocene landscape of the Provincelands dunes originated as interdunal bogs about 1000 yr B.P. and became ponds more recently as water-levels increased. Peat formation in the Provincelands reflects climatic changes evident on both sides of the Atlantic region.This is the 8th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   
117.
118.
119.
Previous research has shown that self‐centering steel plate shear walls (SC‐SPSWs) are capable of achieving enhanced seismic performance at multiple hazard levels, including recentering following design‐level earthquakes. When modeling SC‐SPSWs numerically, these studies considered an idealized tension‐only steel plate shear wall (SPSW) web plate behavior. Research has shown that web plate behavior is more complex than predicted by the idealized model, and web plates can provide more strength, stiffness, and energy dissipation than predicted by the idealized model. The idealized model of web plate behavior is used widely in SPSW numerical models where the moment‐resisting boundary frame provides supplemental hysteretic damping and stiffness; however, in SC‐SPSWs, where the post‐tensioned boundary frame is designed to remain elastic during an earthquake, accounting for the more complex web plate behavior can have a significant impact on seismic performance estimates from numerical simulation. This paper presents different methods for modeling SC‐SPSWs. Responses from these models are compared with experimental results. A simple modification of the tension‐only model, referred to as the tension‐compression strip model, is shown to provide a reasonable approximation of SC‐SPSW behavior. Results from nonlinear response history analyses of SC‐SPSWs with the tension‐only and tension‐compression web plate models are compared to assess how the approximation of web plate behavior affects SC‐SPSW seismic performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
120.
Mixing dissolution, a process whereby mixtures of two waters with different chemical compositions drive undersaturation with respect to carbonate minerals, is commonly considered to form cavernous macroporosity (e.g. flank margin caves and banana holes) in eogenetic karst aquifers. On small islands, macroporosity commonly originates when focused dissolution forms globular chambers lacking entrances to the surface, suggesting that dissolution processes are decoupled from surface hydrology. Mixing dissolution has been thought to be the primary dissolution process because meteoric water would equilibrate rapidly with calcium carbonate as it infiltrates through matrix porosity and because pCO2 was assumed to be homogeneously distributed within the phreatic zone. Here, we report data from two abandoned well fields in an eogenetic karst aquifer on San Salvador Island, Bahamas, that demonstrate pCO2 in the phreatic zone is distributed heterogeneously. The pCO2 varied from less than log ?2.0 to more than log ?1.0 atm over distances of less than 30 m, generating dissolution in the subsurface where water flows from regions of low to high pCO2 and cementation where water flows from regions of high to low pCO2. Using simple geochemical models, we show dissolution caused by heterogeneously distributed pCO2 can dissolve 2.5 to 10 times more calcite than the maximum amount possible by mixing of freshwater and seawater. Dissolution resulting from spatial variability in pCO2 forms isolated, globular chambers lacking initial entrances to the surface, a morphology that is characteristic of flank margin caves and banana holes, both of which have entrances that form by erosion or collapse after cave formation. Our results indicate that heterogeneous pCO2, rather than mixing dissolution, may be the dominant mechanism for observed spatial distribution of dissolution, cementation and macroporosity generation in eogenetic karst aquifers and for landscape development in these settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号