首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   19篇
  国内免费   9篇
测绘学   35篇
大气科学   43篇
地球物理   80篇
地质学   167篇
海洋学   43篇
天文学   69篇
综合类   1篇
自然地理   37篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   9篇
  2020年   6篇
  2019年   10篇
  2018年   10篇
  2017年   6篇
  2016年   24篇
  2015年   16篇
  2014年   14篇
  2013年   25篇
  2012年   24篇
  2011年   31篇
  2010年   29篇
  2009年   36篇
  2008年   15篇
  2007年   20篇
  2006年   19篇
  2005年   21篇
  2004年   15篇
  2003年   9篇
  2002年   11篇
  2001年   12篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   7篇
  1994年   8篇
  1993年   11篇
  1992年   6篇
  1991年   8篇
  1990年   4篇
  1989年   3篇
  1988年   6篇
  1987年   1篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
排序方式: 共有475条查询结果,搜索用时 15 毫秒
211.
For predicting the evolution of solute concentrations in groundwater and testing the impact of remediation policies, a coupling between the agronomical model STICS and the hydrogeological model MODCOU was implemented. When applied to the Seine River basin, this model accurately represents the temporal evolution of average nitrate concentrations in the aquifer, but with large local errors. We propose an improvement to the simple unsaturated zone (UZ) scheme NonsatSW used in STICS–MODCOU. The modifications are based on a comparison with the mechanistic model Metis considered as a reference as it solves Richards' equation. A more realistic saturation profile and a varying percolation rate are integrated in NonsatSW. This new model, named NonsatVG, is assessed by comparing it with NonsatSW and Metis. In an ideal case, NonsatVG generates a solute transfer and a dispersion closer to that of Metis than of NonsatSW. In real cases, without additional calibration, NonsatVG and Metis simulate better the average transfer velocities of the observed nitrate profiles. Furthermore, modifications in NonsatVG give a direct relationship between the depth of the water table and the saturation profile. We obtain, therefore, as in Metis, an evolution of the solute transfer velocity depending on the piezometric level. These dynamics are not simulated in NonsatSW. Despite a modified water transfer through the UZ, NonsatVG is also as valid as NonsatSW in the modelling of water transfer to the saturated zone. Finally, an application to the Seine basin shows that solute transfer velocities are lower with NonsatVG than with NonsatSW, but are in better agreement with literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
212.
Démoulin  Pascal  Dasso  Sergio  Janvier  Miho  Lanabere  Vanina 《Solar physics》2019,294(12):1-34

The three-dimensional morphology and direction of propagation of coronal mass ejections (CMEs) are essential information for identifying their source on the solar disk, for understanding the processes of their ejection and propagation in the corona, and for forecasting their possible impact with the Earth or any other objects in the solar system. The polarization of the Thomson scattering by an electron is known to provide information on its position with respect to the plane of the sky. This polarimetric technique is applied to reconstruct 15 CMEs on the basis of white-light polarized images obtained with the Large Angle Spectrometric Coronagraph (LASCO) C2, which have been extensively corrected for instrumental effects. It does provide valuable results in spite of the time delays between the three observations required to build the polarization maps. Most of these CMEs exhibit complex structures making a classification in terms of simple shapes such as arcade of loops or flux rope difficult or even questionable. Three of these CMEs benefited from multiple observations allowing us to follow their three-dimensional development as they propagated outward. All CMEs are tracked back to the solar surface and in several instances, active regions are identified as the probable sources. Finally, the projected speeds and masses derived from white-light unpolarized observations have been corrected for the projection angle to produce unbiased values.

  相似文献   
213.
214.
Four plutons from the W-Tibati area of central Cameroon crop out in close relationships with the Pan-African Adamawa ductile shear zone (Central Cameroon Shear Zone: CCSZ). These plutons include diorites, tonalites, granodiorites and granites, and most of them are porphyritic due to the abundance of pink K-feldspar megacrysts. Syn-kinematic magma emplacement is demonstrated by the elongate shape of the plutons and by magmatic and ductile (gneissic) foliations that strike parallel to or at a low angle with the CCSZ; the foliation obliquity is consistent with dextral transcurrent tectonics. Whole-rock geochemistry points to high-K calc-alkaline to shoshonitic magmatism. Mixing-mingling features can be observed in the field. However, fractional crystallization of plagioclase, amphibole, biotite (+ K-feldspar in the more felsic compositions) appears to have played a dominant role in the magmatic differentiation processes, as confirmed by mass balance calculations based on major elements. Isotopic signatures suggest that the magmas may have originated from different sources, i.e. either from a young mafic underplate for most magmas with εNdi(600 Ma) around −1 to −2 and Sri(600 Ma) around 0.705, or from an enriched lithospheric mantle for some diorites with εNdi(600 Ma) at −6 and Sri(600 Ma) at 0.7065; mixing with young crustal component is likely. The plutonic rocks of W-Tibati are similar to other Pan-African high-K calk-alkaline syn-kinematic plutons in western Cameroon. They also display striking similarities with high-K calk-alkaline plutons associated with the Patos and Pernambuco shear zones of the Borborema province in NE Brazil.  相似文献   
215.
The regional resultant stress field of the northeastern North Atlantic has shifted significantly throughout the Phanerozoic. In Fennoscandian parts of the Caledonian orogen, mountain building, which was characterized by NW-SE contraction (reference to present North), was followed by a collapse with transport both parallel and transverse to the mountain chain. The Late Palaeozoic – Mesozoic saw several stages of E-W to NW-SE extension, varying in time and position. Local episodes of inversion are traceable in some cases, particularly in connection with deep-seated and long-lived zones of weakness. The Cenozoic has to a larger degree been affected by compression, including folding and basin inversion. Again some of the more pronounced effects of local inversion are related to pre-existing fault systems. Neogene uplift of the western mountainous area in Scandinavia can be unravelled by potential field study, AFT data and reflection seismic sections. Assuming that the region is close to isostatic equilibrium, the uplifted areas must be supported at depth by substantial volumes of low-density material within the crust or the mantle, close to the crust/mantle interface or close to the lithosphere/asthenosphere interfaces.  相似文献   
216.
This paper reports some results of a large experimental program on Boom Clay conducted in Grenoble in the framework of the European project SELFRAC. The program included isotropic compression up to relatively high stress, drained triaxial compression tests at different cell pressures, as well as permeability measurements under isotropic and deviatoric stress. Local measurement of axial and radial displacements allowed the detection of strain localization during deviatoric loading. The permeability of Boom Clay is found to depend on the mean effective stress. The response of Boom Clay during deviatoric loading appears to be strongly affected by the swelling experienced during the isotropic stage preceding triaxial compression. The rate of swelling decreases with isotropic stress. The longer the swelling before shear, more the response under shear becomes ductile and the lower the initial stiffness. Permeability depends on the mean effective stress and it is found to decrease of about two orders of magnitude when the mean stress increases from 1 to 32 MPa. Permeability during shear loading is essentially constant and does not seem to be affected by strain localization. These results are complemented by a few observations obtained using X-ray microtomography in the framework of the more recent European project TIMODAZ. These findings illustrate the impact of pre-existing inclusions and fissures on specimen deformation upon deviatoric loading in the laboratory.  相似文献   
217.
The short-term dynamics (time scale of a few days) of phytoplankton communities in coastal ecosystems, particularly those of toxic species, are often neglected. Such phenomena can be important, especially since these very species can endanger the sustainability of shellfish farming. In this study, we investigated the short-term changes in phytoplankton community structure (species succession) in two coastal zones in parallel with physical and chemical conditions. Mixing events with allochtonous waters could thus be distinguished from local processes associated with population growth when it was associated with a change in light or nutrient limitation. Mixing events and water advection influenced fluctuations in total phytoplankton biomass and concentration of dominant species, while local processes influenced delayed changes in community structure. The estuarine species Asterionellopsis glacialis increased in concentration when the water mass mixed with the nearest estuarine water masses. The biological response, measured as photosynthetic capacity, occurred after a time-lag of a few hours, while the changes in community structure occurred after a time-lag of a few days. Finally, the coastal water mass was constantly mixed with both the nearest estuarine and marine water masses, leading in turn to delayed changes in phytoplankton community structure. These changes in species composition and dominance were observed on a time scale of a few days, which means that some toxic species may be missed with a bi-weekly sampling strategy.  相似文献   
218.
Climate Dynamics - Indian Summer Monsoon (ISM) rainfall and El Niño-Southern Oscillation (ENSO) exhibit an inverse relationship during boreal summer, which is one of the roots of ISM...  相似文献   
219.
This study focuses on a 10-m2 plot within a granitic hillslope in Cevennes mountainous area in France, in order to study infiltration and subsurface hydrological processes during heavy rainfalls and flash floods. The monitoring device included water content at several depths (0–70 cm for the shallow soil water; 0–10 m for the deep water) during both intense artificial and natural rainfall events, chemical and physical tracers, time-lapse electrical resistivity tomography. During the most intense events, the infiltrated water was estimated to be some hundreds of millimetres, which largely exceeds the topsoil capacity (≤40 cm deep in most of the cases). The weathered/fractured rock area below the soil clearly has an active role in the water storage and sub-surface flow dynamics. Vertical flow was dominant in the first 0–10 m, and lateral flow was effective at 8–10 m depth, at the top of the saturated area. The speed of the vertical flow was estimated between 1 and 10 m/hr, whereas it was estimated between 0.1 and 1 m/hr for the lateral flow. The interpretation of the experiments might lead to a local pattern of the 2D-hydrological processes and profile properties, which could be generic for most of the mountainous catchments under Mediterranean climate. It suggests that fast triggering of floods at the catchment scale cannot be explained by a mass transfer within the hillslope, but should be due to a pressure wave propagation through the bedrock fractures, which allows exfiltration of the water downstream the hillslope.  相似文献   
220.
Across the extreme south of Patagonia, the Magallanes‐Fagnano Fault (MFF) accommodates the left‐lateral relative motion between South America and Scotia plates. In this paper, we present an updated view of the geometry of the eastern portion of the MFF outcropping in Tierra del Fuego. We subdivide the MFF in eight segments on the basis of their deformation styles, using field mapping and interpretation of high‐resolution imagery. We quantify coseismic ruptures of the strongest recorded 1949, Mw7.5 earthquake, and determine its eastern termination. We recognize several co‐seismic offsets in man‐made features showing a sinistral shift up to 6.5 m, greater than previously estimated. Using 10Be cosmogenic nuclides depth profiles, we date a cumulated offset in post‐glacial morphologies and estimate the long‐term slip rate of the eastern MFF. We quantify a 6.4 ± 0.9 mm/a left‐lateral fault slip rate, which overlaps geodetic velocity and suggests stable fault behaviour since Pleistocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号