首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1389篇
  免费   49篇
  国内免费   9篇
测绘学   60篇
大气科学   78篇
地球物理   304篇
地质学   597篇
海洋学   113篇
天文学   172篇
综合类   8篇
自然地理   115篇
  2021年   12篇
  2020年   13篇
  2019年   20篇
  2018年   31篇
  2017年   22篇
  2016年   47篇
  2015年   27篇
  2014年   37篇
  2013年   69篇
  2012年   58篇
  2011年   68篇
  2010年   72篇
  2009年   92篇
  2008年   64篇
  2007年   58篇
  2006年   60篇
  2005年   71篇
  2004年   56篇
  2003年   58篇
  2002年   36篇
  2001年   34篇
  2000年   24篇
  1999年   20篇
  1998年   20篇
  1997年   17篇
  1996年   24篇
  1995年   15篇
  1994年   13篇
  1993年   22篇
  1992年   17篇
  1991年   20篇
  1990年   12篇
  1989年   15篇
  1988年   15篇
  1987年   13篇
  1986年   15篇
  1985年   18篇
  1984年   20篇
  1983年   10篇
  1982年   9篇
  1981年   15篇
  1980年   13篇
  1979年   11篇
  1978年   7篇
  1977年   6篇
  1976年   6篇
  1975年   10篇
  1974年   8篇
  1970年   5篇
  1969年   5篇
排序方式: 共有1447条查询结果,搜索用时 156 毫秒
341.
Palaeozoic formations of the Tassilis Oua-n-Ahaggar (southeastern Hoggar) include magmatic rocks in the Tin Serririne syncline. Slight contact metamorphism of the overlying bed and studies of anisotropy of magnetic susceptibility of these rocks show that the latter correspond to sills and NW–SE or north–south dykes. 40K/40Ar dating of separated feldspars and whole rock for one sample and of whole rock for two other samples give a mean age of 347.6±16.2Ma (at the 2-σ level), thus corresponding to a Lower Carboniferous (Tournaisian) age. Taking into account both the age of this magmatism and the stratigraphic and structural data for this region suggests that dolerites were emplaced within distensive zones that are related to the reactivation of Panafrican faults. To cite this article: H. Djellit et al., C. R. Geoscience 338 (2006).  相似文献   
342.
Over the last few decades, General Circulation Models (GCM) have been used to simulate the current martian climate. The calibration of these GCMs with the current seasonal cycle is a crucial step in understanding the climate history of Mars. One of the main climatic signals currently used to validate GCMs is the annual atmospheric pressure cycle. It is difficult to use changes in seasonal deposits on the surface of Mars to calibrate the GCMs given the spectral ambiguities between CO2 and H2O ice in the visible range. With the OMEGA imaging spectrometer covering the near infra-red range, it is now possible to monitor both types of ice at a spatial resolution of about 1 km. At global scale, we determine the change with time of the Seasonal South Polar Cap (SSPC) crocus line, defining the edge of CO2 deposits. This crocus line is not symmetric around the geographic South Pole. At local scale, we introduce the snowdrop distance, describing the local structure of the SSPC edge. Crocus line and snowdrop distance changes can now be used to calibrate GCMs. The albedo of the seasonal deposits is usually assumed to be a uniform and constant parameter of the GCMs. In this study, albedo is found to be the main parameter controlling the SSPC recession at both global and local scale. Using a defrost mass balance model (referred to as D-frost) that incorporates the effect of shadowing induced by topography, we show that the global SSPC asymmetry in the crocus line is controlled by albedo variations. At local scale, we show that the snowdrop distance is correlated with the albedo variability. Further GCM improvements should take into account these two results. We propose several possibilities for the origin of the asymmetric albedo control. The next step will be to identify and model the physical processes that create the albedo differences.  相似文献   
343.
The first objects to arise in a cold dark matter (CDM) universe present a daunting challenge for models of structure formation. In the ultra small-scale limit, CDM structures form nearly simultaneously across a wide range of scales. Hierarchical clustering no longer provides a guiding principle for theoretical analyses and the computation time required to carry out credible simulations becomes prohibitively high. To gain insight into this problem, we perform high-resolution  ( N = 7203–15843)  simulations of an Einstein–de Sitter cosmology where the initial power spectrum is   P ( k ) ∝ k n ,  with  −2.5 ≤ n ≤− 1  . Self-similar scaling is established for   n =−1  and −2 more convincingly than in previous, lower resolution simulations and for the first time, self-similar scaling is established for an   n =−2.25  simulation. However, finite box-size effects induce departures from self-similar scaling in our   n =−2.5  simulation. We compare our results with the predictions for the power spectrum from (one-loop) perturbation theory and demonstrate that the renormalization group approach suggested by McDonald improves perturbation theory's ability to predict the power spectrum in the quasi-linear regime. In the non-linear regime, our power spectra differ significantly from the widely used fitting formulae of Peacock & Dodds and Smith et al. and a new fitting formula is presented. Implications of our results for the stable clustering hypothesis versus halo model debate are discussed. Our power spectra are inconsistent with predictions of the stable clustering hypothesis in the high- k limit and lend credence to the halo model. Nevertheless, the fitting formula advocated in this paper is purely empirical and not derived from a specific formulation of the halo model.  相似文献   
344.
In this account we present estimates of nannofossil fluxes in four sections and one borehole all belonging to the Early Jurassic western Tethys. This study aims to map the distribution of pelagic carbonate production across the Early Toarcian anoxic event (T-OAE), and to understand which environmental parameters did control such production. Our results indicate important changes in carbonate production by nannoplankton occurring within the western Tethys and its variations through time. Nannofossil fluxes (specimens per m2 per year) are extremely low during the T-OAE in all the studied settings. Higher fluxes are encountered in the westernmost part of the Tethys Ocean before the T-OAE, whilst pelagic carbonate production shifted towards the northern margin of the Tethys after the recovery from anoxic conditions. The dramatic decrease in nannoplankton production during the T-OAE has been interpreted in previous works as a biocalcification crisis related to high pCO2 in the atmosphere/hydrosphere system. Although a high pCO2 may have lowered the carbonate saturation state of Early Jurassic oceans and finally hampered biocalcification, we speculate that the most important effects of CO2 increase were indirect, and affected pelagic producers via changes on climate and sea-level. Namely, it seems that precipitation/evaporation budgets and continental runoff that controlled nutrient levels and salinity in surface oceanic waters were important factors for pelagic biocalcifiers.  相似文献   
345.
Tidal inundation was restored to a severely degraded tropical acid sulfate soil landscape and subsequent changes in the abundance and fractionation of Al, Fe and selected trace metals were investigated. After 5 a of regular tidal inundation there were large decreases in water-soluble and exchangeable Al fractions within former sulfuric horizons. This was strongly associated with decreased soil acidity and increases in pH, suggesting pH-dependent immobilisation of Al via precipitation as poorly soluble phases. The water-soluble fractions of Fe, Zn, Ni and Mn also decreased. However, there was substantial enrichment (2–5×) of the reactive Fe fraction (FeR; 1 M HCl extractable) near the soil surface, plus a closely corresponding enrichment of 1 M HCl extractable Cr, Zn, Ni and Mn. Surficial accumulations of Fe(III) minerals in the inter-tidal zone were poorly crystalline (up to 38% FeR) and comprised mainly of schwertmannite (Fe8O8(OH)6SO4) with minor quantities of goethite (α-FeOOH) and lepidocrocite (γ-FeOOH). These Fe (III) mineral accumulations provide an effective substrate for the adsorption/co-precipitation and accumulation of trace metals. Arsenic displayed contrary behaviour to trace metals with peak concentrations (∼60 μg g−1) near the redox minima. Changes in the abundance and fractionation of the various metals can be primarily explained by the shift in the geochemical regime from oxic–acidic to reducing-circumneutral conditions, combined with the enrichment of reactive Fe near the soil surface. Whilst increasing sequestration of trace metals via sulfidisation is likely to occur over the long-term, the current abundance of reactive Fe near the sediment–water interface favours a dynamic environment with respect to metals in the tidally inundated areas.  相似文献   
346.
Bioturbation refers to the mixing of sediment particles resulting from benthic faunal activity. It is the dominant particle mixing process in most marine sediments and exerts an important control on diagenetic processes. In models, bioturbation is usually treated as a diffusive process where the biodiffusion coefficient (Db) characterizes the biological mixing intensity. Biodiffusion coefficients are classically computed by fitting a diffusive model to vertical profiles of particle-bound radioisotopes. One peculiar observation is tracer-dependence: Db values from short-lived tracers tend to be larger than those obtained from long-lived tracers from the same site. Recent theoretical work, based on random walk theory and Lattice Automaton Bioturbation Simulations (LABS), has suggested that this tracer-dependence is simply a model artifact and has concluded that the biodiffusion model is not applicable to the short observational time scales associated with short-lived radioisotopes. Here we have compiled a global dataset of Db values obtained from different radiotracers to assess tracer-dependence from a data perspective. Tracer-dependence is significant in low-mixing environments like slope and deep-sea sediments, but is not present in intensely mixed coastal areas. Tracer-dependence is absent when the number of mixing events is larger than 20, or the potential length scale is greater than 0.5 cm. Roughly this comes down to tracer-derived Db values greater than 2 cm2 yr−1. This condition is met for 68%, 50%, and 8% of published Db values obtained from coastal, continental slope, and abyssal environments, respectively. These results show that short-lived radioisotopes are suitable to quantify biodiffusion mixing in sedimentary environments featuring intense bioturbation.  相似文献   
347.
We have investigated the distribution and isotopic composition of nitrogen and noble gases, and the Ar-Ar chronology of the Bencubbin meteorite. Gases were extracted from different lithologies by both stepwise heating and vacuum crushing. Significant amounts of gases were found to be trapped within vesicles present in silicate clasts. Results indicate a global redistribution of volatile elements during a shock event caused by an impactor that collided with a planetary regolith. A transient atmosphere was created that interacted with partially or totally melted silicates and metal clasts. This atmosphere contained 15N-rich nitrogen with a pressure ?3 × 105 hPa, noble gases, and probably, although not analyzed here, other volatile species. Nitrogen and noble gases were re-distributed among bubbles, metal, and partly or totally melted silicates, according to their partition coefficients among these different phases. The occurrence of N2 trapped in vesicles and dissolved in silicates indicates that the oxygen fugacity (fO2) was greater than the iron-wüstite buffer during the shock event. Ar-Ar dating of Bencubbin glass gives an age of 4.20 ± 0.05 Ga, which probably dates this impact event. The cosmic-ray exposure age is estimated at ∼40 Ma with two different methods. Noble gases present isotopic signatures similar to those of “phase Q” (the major host of noble gases trapped in chondrites) but elemental patterns enriched in light noble gases (He, Ne and Ar) relative to Kr and Xe, normalized to the phase Q composition. Nitrogen isotopic data together with 40Ar/36Ar ratios indicate mixing between a 15N-rich component (δ15N = +1000‰), terrestrial N, and an isotopically normal, chondritic N.Bencubbin and related 15N-rich meteorites of the CR clan do not show stable isotope (H and C) anomalies, precluding contribution of a nucleosynthetic component as the source of 15N enrichments. This leaves two possibilities, trapping of an ancient, highly fractionated atmosphere, or degassing of a primitive, isotopically unequilibrated, nitrogen component. Although the first possibility cannot be excluded, we favor the contribution of primitive material in the light of the recent finding of extremely 15N-rich anhydrous clasts in the CB/CH Isheyevo meteorite. This unequilibrated material, probably carried by the impactor, could have been insoluble organic matter extremely rich in 15N and hosting isotopically Q-like noble gases, possibly from the outer solar system.  相似文献   
348.
With the prospect of humans returning to Moon by the end of the next decade, considerable attention is being paid to technologies required to transport astronauts to the lunar surface and then to be able to carry out surface science. Recent and ongoing initiatives have focused on scientific questions to be asked. In contrast, few studies have addressed how these scientific priorities will be achieved. In this contribution, we provide some of the lessons learned from the exploration of the Haughton impact structure, an ideal lunar analogue site in the Canadian Arctic. Essentially, by studying how geologists carry out field science, we can provide guidelines for lunar surface operations. Our goal in this contribution is to inform the engineers and managers involved in mission planning, rather than the field geology community. Our results show that the exploration of the Haughton impact structure can be broken down into 3 distinct phases: (1) reconnaissance; (2) systematic regional-scale mapping and sampling; and (3) detailed local-scale mapping and sampling. This break down is similar to the classic scientific method practiced by field geologists of regional exploratory mapping followed by directed mapping at a local scale, except that we distinguish between two different phases of exploratory mapping. Our data show that the number of stops versus the number of samples collected versus the amount of data collected varied depending on the mission phase, as does the total distance covered per EVA. Thus, operational scenarios could take these differences into account, depending on the goals and duration of the mission. Important lessons learned include the need for flexibility in mission planning in order to account for serendipitous discoveries, the highlighting of key “science supersites” that may require return visits, the need for a rugged but simple human-operated rover, laboratory space in the habitat, and adequate room for returned samples, both in the habitat and in the return vehicle. The proposed set of recommendations ideally should be tried and tested in future analogue missions at terrestrial impact sites prior to planetary missions.  相似文献   
349.
For good management of groundwater resources, and to comply with European and national regulations, a detailed understanding of an aquifer’s hydraulic setting is required. In order to better characterize a sandy aquifer that is affected by diffuse pollution (Brévilles spring catchment, Val d’Oise, France), and to quantify the transfer time in the saturated zone, a multi-tracer test involving a new technique, the ‘finite volume point dilution method’, has been performed in natural flow conditions. In November 2005, injections of four different tracers took place in four piezometers involving different locations and depths in the aquifer. Recovery of the tracers was observed at two different places near the aquifer outlet. A particularly long and unusual monitoring exercise (27 months) demonstrated the existence of several different velocities within the sandy layer, which seems to be linked to the decrease of hydraulic conductivity with depth. The new insight and parameter quantification brought by interpretation of these tests contribute to a better characterization of the saturated zone. The particularly long-term monitoring exercise also gives new information to understand and forecast the trend and persistence of groundwater contamination by pesticides in the catchment.  相似文献   
350.
Three deep wells (5000 m) have been drilled into a fractured granite basement at Soultz-sous-Forêts, within the Tertiary Rhine Graben, in order to develop a heat exchanger and produce electricity after the creation of an EGS reservoir. Very few analyses representative of the deep geothermal fluids are available because of frequent contamination by drilling fluids or injected waters. These indicate similar chemical and isotopic compositions (NaCl fluids) and high salinities (about 100 g/l) suggesting a common sedimentary origin and identical water–rock interaction processes at equilibrium temperatures close to 230 °C in a sedimentary rather than a granite reservoir. The latter would be situated closer to the Graben centre where the Triassic Buntsandstein formation is deepest and hottest. Tracer tests conducted after 2000 show that the deep native geothermal brine is omnipresent in the fluids discharged during the production and circulation tests. Its natural convective flux was estimated at 1–1.2 m3/h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号