首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1389篇
  免费   49篇
  国内免费   9篇
测绘学   60篇
大气科学   78篇
地球物理   304篇
地质学   597篇
海洋学   113篇
天文学   172篇
综合类   8篇
自然地理   115篇
  2021年   12篇
  2020年   13篇
  2019年   20篇
  2018年   31篇
  2017年   22篇
  2016年   47篇
  2015年   27篇
  2014年   37篇
  2013年   69篇
  2012年   58篇
  2011年   68篇
  2010年   72篇
  2009年   92篇
  2008年   64篇
  2007年   58篇
  2006年   60篇
  2005年   71篇
  2004年   56篇
  2003年   58篇
  2002年   36篇
  2001年   34篇
  2000年   24篇
  1999年   20篇
  1998年   20篇
  1997年   17篇
  1996年   24篇
  1995年   15篇
  1994年   13篇
  1993年   22篇
  1992年   17篇
  1991年   20篇
  1990年   12篇
  1989年   15篇
  1988年   15篇
  1987年   13篇
  1986年   15篇
  1985年   18篇
  1984年   20篇
  1983年   10篇
  1982年   9篇
  1981年   15篇
  1980年   13篇
  1979年   11篇
  1978年   7篇
  1977年   6篇
  1976年   6篇
  1975年   10篇
  1974年   8篇
  1970年   5篇
  1969年   5篇
排序方式: 共有1447条查询结果,搜索用时 546 毫秒
331.
The origin of third-order depositional sequences remains debatable, and in many cases it is not clear whether they were controlled by tectonic activity and/or by eustatic sea-level changes. In Oxfordian and Berriasian–Valanginian carbonate-dominated sections of Switzerland, France, Germany and Spain, high-resolution sequence-stratigraphic and cyclostratigraphic analyses show that the sedimentary record reflects Milankovitch cyclicity. Orbitally induced insolation changes translated into sea-level fluctuations, which in turn controlled accommodation changes. Beds and bedsets formed in rhythm with the precession and 100-kyr eccentricity cycles, whereas the 400-kyr eccentricity cycle contributed to the creation of major depositional sequences. Biostratigraphical data allow the correlation of many of the 400-kyr sequence boundaries with third-order sequence boundaries recognized in European basins. This implies that climatically controlled sea-level changes contributed to the formation of third-order sequences. Furthermore, this cyclostratigraphical approach improves the relative dating of stratigraphic intervals.  相似文献   
332.
Quantin et al. [Quantin, C., Allemand, P., Mangold, N., Delacourt, C., 2004a. Icarus 172, 555-572] tabulated crater count data for 56 landslides along the walls of Valles Marineris. Under the assumption of a constant cratering rate after about 3 Gyr ago, as used in the 1999-2005 iterations of the crater chronology isochron system of Hartmann, and in the Hartmann and Neukum system, these data indicate a regularly increasing rate of landslides, which would be difficult to explain. We suggest that these data may support a decline in inner Solar System cratering rates by about a factor of 3 since 3 Gyr ago, not unlike predictions based on asteroid belt collision models. Such a decline is also supported by our review of data on lunar impact melts and glass spherules in a companion paper [Hartmann, W.K., Quantin, C., Mangold, N., 2007. Icarus 186, 11-23]. Such models produce not only a more uniform rate of landslides over the last 3 Gyr, but also a more uniform rate of resurfacing processes which also had an apparent increase under the assumption of a constant cratering rate.  相似文献   
333.
This study presents a high-resolution multi-proxy investigation of sediment core MD03-2601 and documents major glacier oscillations and deep water activity during the Holocene in the Adélie Land region, East Antarctica. A comparison with surface ocean conditions reveals synchronous changes of glaciers, sea ice and deep water formation at Milankovitch and sub-Milankovitch time scales. We report (1) a deglaciation of the Adélie Land continental shelf from 11 to 8.5 cal ka BP, which occurred in two phases of effective glacier grounding-line retreat at 10.6 and 9 cal ka BP, associated with active deep water formation; (2) a rapid glacier and sea ice readvance centred around 7.7 cal ka BP; and (3) five rapid expansions of the glacier–sea ice systems, during the Mid to Late Holocene, associated to a long-term increase of deep water formation. At Milankovich time scales, we show that the precessionnal component of insolation at high and low latitudes explains the major trend of the glacier–sea ice–ocean system throughout the Holocene, in the Adélie Land region. In addition, the orbitally-forced seasonality seems to control the coastal deep water formation via the sea ice–ocean coupling, which could lead to opposite patterns between north and south high latitudes during the Mid to Late Holocene. At sub-Milankovitch time scales, there are eight events of glacier–sea ice retreat and expansion that occurred during atmospheric cooling events over East Antarctica. Comparisons of our results with other peri-Antarctic records and model simulations from high southern latitudes may suggest that our interpretation on glacier–sea ice–ocean interactions and their Holocene evolutions reflect a more global Antarctic Holocene pattern.  相似文献   
334.
This study describes the origin and age of a body of massive ground ice exposed in the headwall of a thaw slump in the Red Creek valley, central Yukon, Canada. The site is located beyond the limits of Pleistocene glaciation in central Yukon and within the southern limit of the modern continuous permafrost zone. The origin of the massive ground ice, which is preserved under a fine-grained diamicton containing thin layers of tephra, was determined through ice petrography, stable O-H isotope composition of the ice, and gas composition of occluded air entrapped in the ice. The age of the massive ground ice was established by identifying the overlying tephra and radiocarbon dating of a “muck” deposit preserved within the ice. Collectively, the results indicate that the massive ground ice formed by snow densification with limited melting-refreezing and is interpreted as being a buried perennial snowbank. The muck deposit within the ice, which yielded an age of 30,720 ± 340 14C a BP, and the Dawson tephra (25,300 14C a BP) overlying the perennial snowbank, indicates that the snowbank accumulated at roughly the transition between marine isotope stages 3 and 2. Dry climatic conditions at this time and possibly high winds enabled the snowbank to accumulate in the absence of extensive local valley glaciation as occurred in the mountains to the south. In addition to documenting the persistence of relict permafrost and ground ice to warming climate in regions where they are predicted to disappear by numerical models, this study presents evidence of an isotopic biosignature preserved in a body of massive ground ice.  相似文献   
335.
Successful applications of stochastic models for simulating and predicting daily stream temperature have been reported in the literature. These stochastic models have been generally tested on small rivers and have used only air temperature as an exogenous variable. This study investigates the stochastic modelling of daily mean stream water temperatures on the Moisie River, a relatively large unregulated river located in Québec, Canada. The objective of the study is to compare different stochastic approaches previously used on small streams to relate mean daily water temperatures to air temperatures and streamflow indices. Various stochastic approaches are used to model the water temperature residuals, representing short‐term variations, which were obtained by subtracting the seasonal components from water temperature time‐series. The first three models, a multiple regression, a second‐order autoregressive model, and a Box and Jenkins model, used only lagged air temperature residuals as exogenous variables. The root‐mean‐square error (RMSE) for these models varied between 0·53 and 1·70 °C and the second‐order autoregressive model provided the best results. A statistical methodology using best subsets regression is proposed to model the combined effect of discharge and air temperature on stream temperatures. Various streamflow indices were considered as additional independent variables, and models with different number of variables were tested. The results indicated that the best model included relative change in flow as the most important streamflow index. The RMSE for this model was of the order of 0·51 °C, which shows a small improvement over the first three models that did not include streamflow indices. The ridge regression was applied to this model to alleviate the potential statistical inadequacies associated with multicollinearity. The amplitude and sign of the ridge regression coefficients seem to be more in agreement with prior expectations (e.g. positive correlation between water temperature residuals of different lags) and make more physical sense. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
336.
In New Caledonia wildfires and invasive mammals (deer and wild pigs) constitute the major agents of land surface degradation. Our study reveals the linkage between land cover and water balance on the northeast coast of New Caledonia (2400 mm annual rainfall) located on a micaschist basement. The hydrological regime of characteristic and representative land surfaces is assessed using a 1-year record from three 100 m2 plots each, located in a forest area degraded by an invasive fauna, in a woody savannah which is regularly burned, and in a healthy forest area. The three plots present highly contrasting hydrological regimes, with annual and maximum runoff/rain ratios during a rain event of, respectively, 0.82, 0.16, 0.03, and 2.7, 0.7, 0.2, for the degraded forest, the savannah and the healthy forest. Such results suggest that subsurface flow originating from the contributing area above the degraded forest plot should exfiltrate inside the plot. A conceptual model for the degraded forest plot shows that water exfiltrating inside the plot represents 61% of the observed runoff. In savannahs, water should mainly be transferred downstream by subsurface flow within a thick organic soil layer limited by an impervious clay layer at a 20–30 cm depth. Savannahs are generally located above forests and generate the transfer of rainwater to downslope forests. Exfiltration into the forests can be the result of this transfer and depends on the thickness and permeability of the forest topsoils and on topographic gradients. Water exfiltration in forest areas highly degraded by pigs and deer enhances erosion and increases further degradation. It probably also limits percolation in the areas located downstream by increasing the amount of superficial runoff concentrated in gullies.  相似文献   
337.
Management of water, regionally, nationally and globally will continue to be a priority and complex undertaking. In riverine systems, biotic components like flora and fauna play critical roles in filtering water so it is available for human use and consumption. Preservation of ecosystems and associated ecosystem functions is therefore vital. In highly regulated large river basins, natural ecosystems are often supported through provision of environmental flows. Flow delivery, however, should be underpinned by rigorous monitoring to identify and prioritise biotic water requirements. Currently, large-scale monitoring solutions are scaled from remote sensing data via measurement of field evapotranspiration for woody tree vegetation species. However, as there is generally a mismatch between field data collection area and remote sensing pixel size, new methods are required to proportion tree evapotranspiration based on tree fractional canopy area per pixel. We present a novel method to derive tree fractional canopy cover (FTCC) at 20 m resolution in semi-arid and arid floodplain areas. The method employs LiDAR as a canopy area field measurement proxy (10 m resolution). We used Sentinel-1 and Sentinel-2 (radar and multispectral imagery) in a Random Forest analysis, undertaken to develop a predictive FTCC model trained using LiDAR for two regions in the Murray–Darling Basin. A predictor model combining the results of both regions was able to explain between 71%–85% of FTCC variation when compared to LiDAR FTCC when output in 10% increments. Development of this method underpins the advancement of woody vegetation monitoring to inform environmental flow management in the Murray–Darling Basin. The method and fine scale outputs will also be of value to other catchment management concerns such as altered catchment water yields related to bushfires and as such has application to water management worldwide.  相似文献   
338.
Deltas are at the transition between fluvial and marine sedimentary environments where sediment density flows are often triggered during high river discharge events, forming submarine channels and sediment waves. On wave-influenced deltas, longshore currents are particularly efficient at transporting sediment alongshore, reducing the likelihood of sediment density flows from occurring at river mouths. This study describes four deltaic sedimentary systems at different stages of their evolution on a formerly glaciated continental inner shelf of eastern Canada in order to better understand the distribution of sediment density flows on wave-influenced deltas. Three types of settings are recognized as being prone to sediment density flows: (i) in the early stages of wave-influence and on large deltas, converging longshore currents can lead to offshelf sediment transport; (ii) on wave-influenced to wave-dominated deltas, a sandy spit can re-route the river mouth and sediment density flows form where the spit intersects the delta lip; (iii) in advanced stages of wave-dominated deltas and during their demise, rocky headlands are exposed and can intersect the slope, where off-shelf sediment transport occurs. These types of sediment density flows were all characterized by debris flows or surge-type turbidity currents which have limited offshore run-out. More rarely, hyperpycnal flows form at the river mouths, especially where the river incises glaciomarine clays prone to landsliding in the river, which increases fine-grained fluvial suspended sediment concentration. Overall, these results highlight the predominance of fluvial-dominated deltas during a phase of relative sea-level fall combined with high sediment supply. However, as soon as sediment supply diminishes, wave action remobilizes sediment alongshore modifying the distribution and types of sediment density flows occurring on wave-influenced deltas.  相似文献   
339.
340.
Camptonites have been discovered at Mount Cameroon. They contain phenocrysts of olivine + clinopyroxene + plagioclase ± kaersutite ± bi and ocelli of nepheline or analcite and carbonates. 87Sr/86Sri values are similar to those of the basalts of Mount Cameroon (0.7033). The camptonites are interpreted as resulting from fractional crystallization of a basaltic magma generated by a low degree of melting of an infra-lithospheric metasomatized mantle tapped by huge lithospheric cracks. To cite this article: I. Ngounouno et al., C. R. Geoscience 338 (2006).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号