首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1389篇
  免费   49篇
  国内免费   9篇
测绘学   60篇
大气科学   78篇
地球物理   304篇
地质学   597篇
海洋学   113篇
天文学   172篇
综合类   8篇
自然地理   115篇
  2021年   12篇
  2020年   13篇
  2019年   20篇
  2018年   31篇
  2017年   22篇
  2016年   47篇
  2015年   27篇
  2014年   37篇
  2013年   69篇
  2012年   58篇
  2011年   68篇
  2010年   72篇
  2009年   92篇
  2008年   64篇
  2007年   58篇
  2006年   60篇
  2005年   71篇
  2004年   56篇
  2003年   58篇
  2002年   36篇
  2001年   34篇
  2000年   24篇
  1999年   20篇
  1998年   20篇
  1997年   17篇
  1996年   24篇
  1995年   15篇
  1994年   13篇
  1993年   22篇
  1992年   17篇
  1991年   20篇
  1990年   12篇
  1989年   15篇
  1988年   15篇
  1987年   13篇
  1986年   15篇
  1985年   18篇
  1984年   20篇
  1983年   10篇
  1982年   9篇
  1981年   15篇
  1980年   13篇
  1979年   11篇
  1978年   7篇
  1977年   6篇
  1976年   6篇
  1975年   10篇
  1974年   8篇
  1970年   5篇
  1969年   5篇
排序方式: 共有1447条查询结果,搜索用时 312 毫秒
281.
This article proposes a methodology to analyse the composition of very small carbonate samples such as larval fish otoliths. The chemical composition of otoliths, which are carbonate structures in the inner ear, is often used to explore population dynamics in fishes. Recent advances in laser ablation‐inductively coupled plasma‐mass spectrometry have suggested its potential application to this field. In this study, analyses were performed using a 193 nm ArF Resonetics LA system, coupled to an Agilent 7700X‐ICP‐MS, with the following ablation parameters: a beam diameter of 5 μm, energy of 3 mJ, 2.7 J cm?2, laser repetition rate of 10 Hz and translation speed of 2.5 μm s?1. NIST SRM 610 glass was used as the primary calibration material. Performing this protocol, characterisation of a USGS GP‐4 reference material was achieved with suitable precision and accuracy, but the USGS MACS‐3 reference material appeared more heterogeneous under the ablation conditions tested. Calibration was performed using two different beam diameters (5 and 11 μm). Capelin (Mallotus villosus) otoliths measuring between 10 and 20 μm in diameter were tested. Even though a smaller beam diameter and lower energy were used compared with those normally employed to analyse larger otoliths, the method was successful.  相似文献   
282.
The theory of folding in stratified media presented by Biot and Ramberg has been extended by considering a more general type of material response. The model consists of a viscous layer embedded in a less viscous medium, compressed parallel to the layering. A transition from Newtonian to non-Newtonian behavior is considered and an approximate solution to the governing equation is discussed. The results give the effect of local, stress-induced changes in the viscosity on the profile of the fold. The results indicate that as the transition to non-Newtonian behavior proceeds, the wavelength selection process described by Biot and Ramberg breaks down; the wavelength of the fold which develops probably will not be the “dominant” wavelength defined by Biot.  相似文献   
283.
284.
In this study, the impact of the ocean–atmosphere coupling on the atmospheric mean state over the Indian Ocean and the Indian Summer Monsoon (ISM) is examined in the framework of the SINTEX-F2 coupled model through forced and coupled control simulations and several sensitivity coupled experiments. During boreal winter and spring, most of the Indian Ocean biases are common in forced and coupled simulations, suggesting that the errors originate from the atmospheric model, especially a dry islands bias in the Maritime Continent. During boreal summer, the air-sea coupling decreases the ISM rainfall over South India and the monsoon strength to realistic amplitude, but at the expense of important degradations of the rainfall and Sea Surface Temperature (SST) mean states in the Indian Ocean. Strong SST biases of opposite sign are observed over the western (WIO) and eastern (EIO) tropical Indian Ocean. Rainfall amounts over the ocean (land) are systematically higher (lower) in the northern hemisphere and the south equatorial Indian Ocean rainfall band is missing in the control coupled simulation. During boreal fall, positive dipole-like errors emerge in the mean state of the coupled model, with warm and wet (cold and dry) biases in the WIO (EIO), suggesting again a significant impact of the SST errors. The exact contributions and the distinct roles of these SST errors in the seasonal mean atmospheric state of the coupled model have been further assessed with two sensitivity coupled experiments, in which the SST biases are replaced by observed climatology either in the WIO (warm bias) or EIO (cold bias). The correction of the WIO warm bias leads to a global decrease of rainfall in the monsoon region, which confirms that the WIO is an important source of moisture for the ISM. On the other hand, the correction of the EIO cold bias leads to a global improvement of precipitation and circulation mean state during summer and fall. Nevertheless, all these improvements due to SST corrections seem drastically limited by the atmosphere intrinsic biases, including prominently the unimodal oceanic position of the ITCZ (Inter Tropical Convergence Zone) during summer and the enhanced westward wind stress along the equator during fall.  相似文献   
285.
286.
We investigate the mesoscale dynamics of the mistral through the wind profiler observations of the MAP (autumn 1999) and ESCOMPTE (summer 2001) field campaigns. We show that the mistral wind field can dramatically change on a time scale less than 3 hours. Transitions from a deep to a shallow mistral are often observed at any season when the lower layers are stable. The variability, mainly attributed in summer to the mistral/land–sea breeze interactions on a 10-km scale, is highlighted by observations from the wind profiler network set up during ESCOMPTE. The interpretations of the dynamical mistral structure are performed through comparisons with existing basic theories. The linear theory of R. B. Smith [Advances in Geophysics, Vol. 31, 1989, Academic Press, 1–41] and the shallow water theory [Schär, C. and Smith, R. B.: 1993a, J. Atmos. Sci. 50, 1373–1400] give some complementary explanations for the deep-to-shallow transition especially for the MAP mistral event. The wave breaking process induces a low-level jet (LLJ) downstream of the Alps that degenerates into a mountain wake, which in turn provokes the cessation of the mistral downstream of the Alps. Both theories indicate that the flow splits around the Alps and results in a persistent LLJ at the exit of the Rhône valley. The LLJ is strengthened by the channelling effect of the Rhône valley that is more efficient for north-easterly than northerly upstream winds despite the north–south valley axis. Summer moderate and weak mistral episodes are influenced by land–sea breezes and convection over land that induce a very complex interaction that cannot be accurately described by the previous theories.  相似文献   
287.
Several numerical experiments are conducted to examine the influence of mesoscale, bottom topography roughness on the inertial circulation of a wind-driven, mid-latitude ocean gyre. The ocean model is based on the quasi-geostrophic formulation, and is eddy-resolving as it features high vertical and horizontal resolutions (six layers and a 10 km grid). An antisymmetrical double-gyre wind stress curl forces the baroclinic modes and generates a strong surface jet. In the case of a flat bottom, inertia and inverse energy cascade force the barotropic mode, and the resulting circulation features strong, barotropic, inertial gyres. The sea-floor roughness inhibits the inertial circulation in the deep layers; the barotropic component of the flow is then forced by eddy-topography interactions, and its energy concentrates at the scales of the topography. As a result, the baroclinicity of the flow is intesified: the barotropic mode is reduced with regard to the baroclinic modes, and the bottom flow (constrained by the mesoscale sea-floor roughness) is decoupled from the surface flow (forced by the gyre-scale wind). Rectified, mesoscale bottom circulation induces an interfacial form stress at the thermocline, which enhances horizontal shear instability and opposes the eastward penetration of the jet. The mean jet is consequently shortened, but the instantaneous jet remains very turbulent, with meanders of large meridional extent. The sea-floor roughness modifies the energy pathways, and the eddies have an even more important role in the establishment of the mean circulation: below the thermocline, rectification processes are dominant, and eddies transfer energy toward permanent mesoscale circulations strongly correlated with topography, whereas above the thermocline mean flow and eddy generation are influenced by the mean bottom circulation through interfacial stress. The topography modifies the vorticity of the barotropic and highest baroclinic modes. Vorticity accumulates at the small topographic scales, and the vorticity content of the highest modes, which is very weak in the flat-bottom case, increases significantly. Few changes occur in surface-intensified modes. In the deep layers of the model, the inverse correlation between relative vorticity and topography at small scales ensures the homogenization of the potential vorticity, which mainly retains the largest scales of the bottom flow and the scale of β.  相似文献   
288.
This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean–atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Ni?o—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.  相似文献   
289.
Abstract— Detailed field mapping has revealed the presence of a series of intra‐crater sedimentary deposits within the interior of the Haughton impact structure, Devon Island, Canadian High Arctic. Coarse‐grained, well‐sorted, pale gray lithic sandstones (reworked impact melt breccias) unconformably overlie pristine impact melt breccias and attest to an episode of erosion, during which time significant quantities of impact melt breccias were removed. The reworked impact melt breccias are, in turn, unconformably overlain by paleolacustrine sediments of the Miocene Haughton Formation. Sediments of the Haughton Formation were clearly derived from pre‐impact lower Paleozoic target rocks of the Allen Bay Formation, which form the crater rim in the northern, western, and southern regions of the Haughton structure. Collectively, these field relationships indicate that the Haughton Formation was deposited up to several million years after the formation of the Haughton crater and that they do not, therefore, represent an immediate, post‐impact crater lake deposit. This is consistent with new isotopic dating of impactites from Haughton that indicate an Eocene age for the impact event (Sherlock et al. 2005). In addition, isolated deposits of post‐Miocene intra‐crater glacigenic and fluvioglacial sediments were found lying unconformably over remnants of the Haughton Formation, impact melt breccias, and other pre‐impact target rock formations. These deposits provide clear evidence for glaciation at the Haughton crater. The wealth and complexity of geological and climatological information preserved as intra‐crater deposits at Haughton suggests that craters on Mars with intra‐crater sedimentary records might present us with similar opportunities, but also possibly significant challenges.  相似文献   
290.
Lascar Volcano (Atacama, Chile) erupted on 18–20 April 1993. Several sub-Plinian explosions occurred, and some were mushroom-shaped. The highest column rose up to 23 km. Ash clouds crossed South America eastwards. Dacite pumice falls made of blocks and ashes were deposited on the flanks of the volcano as a result of collapsed columns. The pumice contains phenocrysts of plagioclase, enstatite, augite, biotite, magnetite and ilmenite and small crystals of apatite. The 1992 previous andesite dome inside the crater was destroyed. Banded blocks resulting from mingling of the dacitic pumice and andesite from the dome are found in the pumice flow. Both the lava dome and the pumice are representative of the Lascar high-K magma unit. Dacitic pumice is a product of crystal fractionation of the andesitic magma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号