首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   73篇
测绘学   55篇
大气科学   57篇
地球物理   258篇
地质学   230篇
海洋学   56篇
天文学   176篇
综合类   2篇
自然地理   32篇
  2023年   3篇
  2022年   4篇
  2021年   10篇
  2020年   17篇
  2019年   12篇
  2018年   38篇
  2017年   43篇
  2016年   41篇
  2015年   36篇
  2014年   44篇
  2013年   33篇
  2012年   38篇
  2011年   49篇
  2010年   47篇
  2009年   50篇
  2008年   34篇
  2007年   41篇
  2006年   22篇
  2005年   20篇
  2004年   29篇
  2003年   22篇
  2002年   24篇
  2001年   24篇
  2000年   13篇
  1999年   16篇
  1998年   15篇
  1997年   9篇
  1996年   6篇
  1995年   10篇
  1994年   4篇
  1993年   16篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1983年   4篇
  1982年   4篇
  1980年   6篇
  1979年   5篇
  1978年   7篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1971年   3篇
  1969年   3篇
  1955年   3篇
排序方式: 共有866条查询结果,搜索用时 656 毫秒
661.
Response parameters used to estimate nonstructural damage differ depending on whether deformation‐sensitive or acceleration‐sensitive components are considered. In the latter case, seismic demand is usually represented through floor spectra, that is response spectra in terms of pseudo‐acceleration, which are calculated at the floor levels of the structure where the nonstructural components are attached to. Objective of this paper is to present a new spectrum‐to‐spectrum method for calculating floor acceleration spectra, which is able to explicitly account for epistemic uncertainties in the modal properties of the supporting structure. By using this method, effects on the spectra of possible variations from nominal values of the periods of vibration of the structure can be estimated. The method derives from the extension of closed‐form equations recently proposed by the authors to predict uniform hazard floor acceleration spectra. These equations are built to rigorously account for the input ground motion uncertainty, that is the record‐to‐record variability of the nonstructural response. In order to evaluate the proposed method, comparisons with exact spectra obtained from a standard probabilistic seismic demand analysis, as well as spectra calculated using the Eurocode 8 equation, are finally shown. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
662.
In the recent past, suspended zipper‐braced frames were proposed to avoid one‐storey collapse mechanisms and dynamic instability under severe ground motions. In this paper, the design procedure suggested by Yang et al. is first slightly modified to conform to the design approach and capacity design rules stipulated in Eurocode 8 for concentrically braced frames. The procedure is applied to a set of suspended zipper‐braced frames with different number of storeys and founded on either soft or rock soil. The structural response of these frames is analysed to highlight qualities and deficiencies and to assess the critics reported by other researchers with regard to the design procedure by Yang et al. Then, improvements are proposed to this procedure to enhance the energy dissipation of the chevron braces and the response of the structural system as well. The effectiveness of the design proposals is evaluated by incremental dynamic analysis on structures with different geometric properties, gravity loads and soil of foundation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
663.
The seismic response of non‐ductile reinforced concrete (RC) buildings can be affected by the behaviour of beam‐column joints involved in the failure mechanism, especially in typical existing buildings. Conventional modelling approaches consider only beam and column flexibility, although joints can provide a significant contribution also to the overall frame deformability. In this study, the attention is focused on exterior joints without transverse reinforcement, and a possible approach to their modelling in nonlinear seismic analysis of RC frames is proposed. First, experimental tests performed by the authors are briefly presented, and their results are discussed. Second, these tests, together with other tests with similar features from literature, are employed to calibrate the joint panel deformability contribution in order to reproduce numerically the experimental joint shear stress–strain behaviour under cyclic loading. After a validation phase of this proposal, a numerical investigation of the influence of joints on the seismic behaviour of a case study RC frame – designed for gravity loads only – is performed. The preliminary failure mode classification of the joints within the analysed frame is carried out. Structural models that (i) explicitly include nonlinear behaviour of beam‐column joints exhibiting shear or anchorage failure or (ii) model joints as elements with infinite strength and stiffness are built and their seismic performance are assessed and compared. A probabilistic assessment based on nonlinear dynamic simulations is performed by means of a scaling approach to evaluate the seismic response at different damage states accounting for uncertainties in ground‐motion records. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
664.
We examine the issue of sustained measurements of sea level in the coastal zone, first by summarizing the long-term observations from tide gauges, then showing how those are now complemented by improved satellite altimetry products in the coastal ocean. We present some of the progresses in coastal altimetry, both from dedicated reprocessing of the radar waveforms and from the development of improved corrections for the atmospheric effects. This trend towards better altimetric data at the coast comes also from technological innovations such as Ka-band altimetry and SAR altimetry, and we discuss the advantages deriving from the AltiKa Ka-band altimeter and the SIRAL altimeter on CryoSat-2 that can be operated in SAR mode. A case study along the UK coast demonstrates the good agreement between coastal altimetry and tide gauge observations, with root mean square differences as low as 4 cm at many stations, allowing the characterization of the annual cycle of sea level along the UK coasts. Finally, we examine the evolution of the sea level trend from the open to the coastal ocean along the western coast of Africa, comparing standard and coastally improved products. Different products give different sea level trend profiles, so the recommendation is that additional efforts are needed to study sea level trends in the coastal zone from past and present satellite altimeters. Further improvements are expected from more refined processing and screening of data, but in particular from the constant improvements in the geophysical corrections.  相似文献   
665.
We use the innermost kinematics of spirals to investigate whether these galaxies could host the massive black hole remnants that once powered the quasi-stellar object (QSO) phenomenon. Hundreds of rotation curves of early- and late-type spirals are used to place upper limits on the central black hole (BH) masses. We find that (i) in late-type spirals, the central massive dark objects (MDOs) are about 10–100 times smaller than the MDOs detected in ellipticals, and (ii) in early-type spirals, the central bodies are likely to be in the same mass range as the elliptical MDOs. As a consequence, the contribution to the QSO/active galactic nuclei (AGN) phenomenon by the BH remnants eventually hosted in spirals is negligible: ρ BH(Sb–Im)<6×104 M Mpc−3 . We find several hints that the MDO mass versus bulge mass relationship is significantly steeper in spirals than in ellipticals, although the very issue of the existence of such a relation for late Hubble type objects remains open. The upper limits on the masses of the BHs resident in late-type spirals are stringent: M BH106–107 M, indicating that only low-luminosity activity could possibly have occurred in these objects .  相似文献   
666.
Observations of the solar corona in the FeXIV 530.3 nm “green line” have been very important in the past, and are planned for future coronagraphs on-board forthcoming space missions such as PROBA-3 and Aditya. For these instruments, a very important parameter to be optimized is the spectral width of the band-pass filter to be centred over the “green line”. Focusing on solar eruptions, motions occurring along the line of sight will Doppler shift the line profiles producing an emission that will partially fall out of the narrower pass-band, while broader pass-band will provide observations with reduced spectral purity. To address these issues, we performed numerical (MHD) simulation of CME emission in the “green line” and produced synthetic images assuming 4 different widths of the pass-band (Δλ = 20 Å, 10 Å, 5 Å, and 2 Å). It turns out that, as expected, during solar eruptions a significant fraction of “green line” emission will be lost using narrower filters; on the other hand these images will have a higher spectral purity and will contain emission coming from parcels of plasma expanding only along the plane of the sky. This will provide a better definition of single filamentary features and will help isolating single slices of plasma through the eruption, thus reducing the problem of superposition of different features along the line of sight and helping physical interpretation of limb events. For these reasons, we suggest to use narrower band passes (Δλ ≤ 2 Å) for the observations of solar eruptions with future coronagraphs.  相似文献   
667.
Low energy protons (< 300 keV) can enter the field of view of X-ray telescopes, scatter on their mirror surfaces at small incident angles, and deposit energy on the detector. This phenomenon can cause intense background flares at the focal plane decreasing the mission observing time (e.g. the XMM-Newton mission) or in the most extreme cases, damaging the X-ray detector. A correct modelization of the physics process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance (e.g. observation time, sensitivity) of future X-ray telescopes as the ESA ATHENA mission. The Remizovich model describes particles reflected by solids at glancing angles in terms of the Boltzmann transport equation using the diffuse approximation and the model of continuous slowing down in energy. For the first time this solution, in the approximation of no energy losses, is implemented, verified, and qualitatively validated on top of the Geant4 release 10.2, with the possibility to add a constant energy loss to each interaction. This implementation is verified by comparing the simulated proton distribution to both the theoretical probability distribution and with independent ray-tracing simulations. Both the new scattering physics and the Coulomb scattering already built in the official Geant4 distribution are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (< 200 keV) and small reflection angles, so we are not able to address any of the tested models as the one that can certainly reproduce the scattering behavior of low energy protons expected for the ATHENA mission. We can, however, discard multiple scattering as the model able to reproduce soft proton funnelling, and affirm that Coulomb single scattering can represent, until further measurements at lower energies are available, the best approximation of the proton scattered angular distribution at the exit of X-ray optics.  相似文献   
668.
Expanding the frequency spectrum in marine CSEM applications   总被引:1,自引:0,他引:1  
In this paper we show how marine controlled source electromagnetic data interpretation can be improved if the data are acquired with an expanded frequency spectrum. Especially in the case of targets located at a wide range of depths, both high- and low-frequency data can provide useful information for improving the risk analysis associated with different prospects with variable size and depth. We discuss an application to a real data set acquired in deep water offshore Nigeria using two values of fundamental frequency: 0.05 Hz and 0.25 Hz. Both frequencies, together with higher frequency harmonics, have been used for multi-frequency and multi-dimensional modelling and inversion with excellent results.
At the end of the interpretation work, areas with different electric and magnetic anomalies were mapped and quantitatively interpreted in terms of resistivity distribution in the 3D space. Relatively high-frequency data (0.25 Hz and the first two harmonics) were useful for constraining the shallowest part of the resistivity models, including the presence of thin resistive layers, such as the gas sand recognized in correspondence of the well previously drilled in the NW portion of the block.
Low-frequency data (0.05 Hz) were useful for constraining the deepest portion of the models (from 2 km to 4 km below sea floor) and for characterizing the resistivity of the background.
From an exploration point of view, the whole workflow based on multi-frequency data analysis of this electromagnetic data set was very useful for further de-risking the different prospects previously individuated in the area using seismic information.  相似文献   
669.
New detailed data about the morphology of the submerged slopes of Lake Albano (Rome, Italy) have been collected by a sonar multibeam survey financed by the Italian Department of Civil Protection. These data allow for investigation of the subaqueous slope dynamics of the lake, which partially fills a volcanic depression, and the elucidation of the relationships between subaqueous and subaerial slope processes. Subaerial, submerged and combined subaerial/submerged landslide‐related morphologies were detected around the inner slopes of the lake. In the submerged slopes, several gravity‐induced landforms were recognized: landslide scar areas, landslide accumulations, erosional chutes and channels, block fields, isolated blocks, scarps and slope breaks. An attempt to evaluate the state of activity of the submerged slopes was carried out by taking into consideration the relative freshness of some selected landforms. Interpretation of bathymetric data, as well as direct surveys of the subaerial slopes, was used to assess the morphometric features and interpret the type of movement of the landslides. We propose a comprehensive classification based on the landslide's size and type of movement. We recognized rock fall/topples, debris flows, rock slides and slump, complex rock slides/channelled flows and debris slide and slump. The volume of the main landslides ranged between 101 and 103 m3, while a few rock and debris slides have volumes ranging between 103 and 105 m3. Two large palaeo‐landslides with volumes on the order of 106 m3 were identified in the southern and northern part of the lake, respectively. Velocities of the recognized landslides range from rapid to extremely rapid. Two main landslide hazard scenarios have been depicted from the results of the integrated analysis of both subaerial and submerged gravity‐induced landforms. The most hazardous scenario involves extremely rapid large volume events (>106 m3) that could, if they interacted with water, induce catastrophic tsunamis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
670.
A retrofit procedure for existing buildings called the "weakening and damping technique" (WED) is presented in this paper. Weakening of structures can limit the maximum response accelerations during severe ground motions, but leads to an increase in the displacements or inter-story drifts. Added damping by using viscous dampers, on the other hand, reduces the inter-story drifts and has no significant effect on total accelerations, when structures behave inelastically. The weakening and damping technique addresses the two main causes for both structural and nonstructural damage in structures. The weakening retrofit is particularly suitable for structures that have overstressed components and weak brittle components. In this paper, the advantages of the WeD are verified by nonlinear dynamic analysis and simplified spectral approach that has been modified to fit structures with additional damping devices. A hospital structure located in the San Femando Valley in California is selected as a case study. The results from both analyses show that the retrofit solution is feasible to reduce both structural acceleration and displacement. A sensitivity analysis is also carried out to evaluate the effectiveness of the retrofitting method using different combinations of performance thresholds in accelerations and displacements through fragility analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号