首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   17篇
  国内免费   1篇
测绘学   10篇
大气科学   40篇
地球物理   107篇
地质学   118篇
海洋学   44篇
天文学   59篇
自然地理   23篇
  2023年   1篇
  2022年   3篇
  2021年   12篇
  2020年   13篇
  2019年   10篇
  2018年   22篇
  2017年   19篇
  2016年   28篇
  2015年   18篇
  2014年   15篇
  2013年   23篇
  2012年   19篇
  2011年   38篇
  2010年   20篇
  2009年   31篇
  2008年   27篇
  2007年   18篇
  2006年   10篇
  2005年   14篇
  2004年   9篇
  2003年   12篇
  2002年   9篇
  2001年   3篇
  2000年   5篇
  1999年   7篇
  1998年   6篇
  1997年   3篇
  1995年   2篇
  1991年   1篇
  1986年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有401条查询结果,搜索用时 15 毫秒
121.
Climate change and land use conversion are global threats to biodiversity. Protected areas and biological corridors have been historically implemented as biodiversity conservation measures and suggested as tools within planning frameworks to respond to climate change. However, few applications to national protected areas systems considering climate change in tropical countries exist. Our goal is to define new priority areas for biodiversity conservation and biological corridors within an existing protected areas network. We aim at preserving samples of all biodiversity under climate change and facilitate species dispersal to reduce the vulnerability of biodiversity. The analysis was based on a three step strategy: i) protect representative samples of various levels of terrestrial biodiversity across protected area systems given future redistributions under climate change, ii) identify and protect areas with reduced climate velocities where populations could persist for relatively longer periods, and iii) ensure species dispersal between conservation areas through climatic connectivity pathways. The study was integrated into a participatory planning approach for biodiversity conservation in Costa Rica. Results showed that there should be an increase of 11 % and 5 % on new conservation areas and biological corridors respectively. Our approach integrates climate change into the design of a network of protected areas for tropical ecosystems and can be applied to other biodiversity rich areas to reduce the vulnerability of biodiversity to global warming.  相似文献   
122.
The Spanish Central System (SCS) batholith, located in the Central Iberian Zone, is one of the largest masses of granite in the European Variscan Belt. This batholith is a composite unit of late- and post-kinematic granitoids dominated by S- and I-type series granite, with subordinate leucogranite and granodiorite. Zircon trace element contents, from two representative S-type and three I-type granitoids from the eastern portion of the SCS batholith, indicate a heterogeneous composition due to magma differentiation and co-crystallisation of other trace element-rich accessory phases. In situ, U–Pb dating of these zircons by SHRIMP and LA-ICP-MS shows 479–462-Ma inherited zircon ages in the I-type intrusions, indicating the involvement of an Ordovician metaigneous protolith, while the S-type intrusions exclusively contain Cadomian and older zircon ages. The zircon crystallisation ages show that these granites have been emplaced at ca. 300?Ma with a time span between 303?±?3?Ma and 298?±?3?Ma. Precise dating by CA-ID-TIMS reveals a pulse at 305.7?±?0.4?Ma and confirms the major pulse at 300.7?±?0.6?Ma. These ages match the Permo-Carboniferous age for granulite-facies metamorphism of the lower crust under the SCS batholith and coincide with a widespread granitic event throughout the Southern Variscides. Ti-in zircon thermometry indicates temperatures between 844 and 784°C for both the S- and I-type granites, reinforcing the hypothesis that these granites are derived from deep crustal sources.  相似文献   
123.
Diaz  Hector  Mazzorana  Bruno  Gems  Bernhard  Rojas  Ivan  Santibañez  Nicole  Iribarren  Pablo  Pino  Mario  Iroumé  Andrés 《Natural Hazards》2022,111(3):3099-3120

Sudden avulsions, unexpected channel migrations and backfilling phenomena are autogenic phenomena that can considerably change the propagation patterns of sediment-laden flows on alluvial fans. Once the initial and boundary conditions of the hazard scenario with a given return period are determined, the assessment of the associated exposed areas is based on one numerical, essentially deterministic, process simulation which may not adequately capture the underlying process variability. We generated sediment-laden flows on an experimental alluvial fan by following a “similarity-of-process concept”. Specifically, we considered a convexly shaped alluvial fan model layout featuring a curved guiding channel. As loading conditions, we defined a reference, an increased and a reduced level for the released water volume and the predisposed solid fraction, respectively. Further, we imposed two different stream power regimes and accomplished, for each factor combination, eight experimental runs. The associated exposure areas were recorded by video and mapped in a GIS. We then analysed exposure data and determined exposure probability maps superposing the footprints of the eight repetitions associated with each experimental loading condition. The patterns of exposure referred to the specific loading conditions showed a noticeable variability related to the main effects of the total event volume, the solid fraction, the interactions between them, and the imposed stream power in the feeding channel. Our research suggests that adopting a probabilistic notion of exposure in risk assessment and mitigation is advisable. Further, a major challenge consists in adapting numerical codes to better reflect the stochastics of process propagation for more reliable flood hazard assessments.

  相似文献   
124.
Nutrient sources of San Quintin Bay, a coastal lagoon affected by coastal upwelling off Baja California (Mexico), were traced using generalized additive (mixed) models (GAMM) to the stable nitrogen isotopic composition, C:N and N content of two co-occurring macrophytes (the macroalgae Ulva spp. and the seagrass Zostera marina). The geochemical tracers followed a spatial trend that partly responded to the long-term nutrient gradient from the ocean towards the interior of the bay. N content in Z. marina and Ulva spp. decreased linearly (while C:N increased) towards the middle section of the bay to concentration levels that indicate potential N limitation for growth. Concurrently midway into the bay (6–9 km), the δ15N of both macrophytes showed a gradual enrichment in 15N reflecting progressive denitrification. The spatial pattern of δ15N and the decrease in C:N of the macrophytes towards the innermost section of the bay indicated an additional nonoceanic source of dissolved nitrogen in this zone. The similarity of the δ15N pattern of Z. marina and Ulva spp. implies that their δ15N composition is mainly controlled by the availability of N, in spite of the physiological differences between taxa. A better fit of GAMM to N content and C:N was obtained for Z. marina than for Ulva spp. indicating that the former delineate more steadily and smoothly the influence of upwelling along the spatial gradient. Nonetheless, Ulva spp. may be analyzed in combination with Z. marina to characterize the environmental conditions at the time of sampling.  相似文献   
125.
Urban and artificial structures are increasingly added to the world’s coasts during a time in which changing climate is forecast to drive shifts in naturally occurring habitats. We ask whether the role of artificial structures as marine habitats will increase in importance relative to their natural counterparts, particularly as natural habitats are negatively affected by ocean warming and acidification. To evaluate this model, we contrasted use of natural (kelp forest and turfing algae) and artificial habitat (plastic pier-piling) by a nest-building amphipod (Cymadusa pemptos) under current and future climate conditions of CO2 and temperature. Under future conditions, amphipod populations in mesocosms increased, but this did not lead to greater proportional colonization of kelp and turf. Instead, colonization doubled in artificial habitats, and there was increasing production and occupation of nests on artificial habitats relative to natural habitats. In an age when human modification of natural substrata is increasingly cited as an agent of wildlife decline, understanding the future role of artificial habitats as replacement dwellings for natural habitats is critical. We pioneer an understanding of the future role of natural and artificial habitats, identifying the possibility that the role of urban structures as marine habitats may only increase.  相似文献   
126.
The La Costa pluton in the Sierra de Velasco (NW Argentina) consists of S-type granitoids that can be grouped into three igneous facies: the alkali-rich Santa Cruz facies (SCF, SiO2 ~67 wt%) distinguished by the presence of andalusite and Na- and Li-rich cordierite (Na2O = 1.55–1.77 wt% and Li2O = 0.14–0.66 wt%), the Anillaco facies (SiO2 ~74 wt%) with a significant proportion of Mn-rich garnet, and the Anjullón facies (SiO2 ~75 wt%) with abundant albitic plagioclase. The petrography, mineral chemistry and whole-rock geochemistry of the SCF are compatible with magmatic crystallization of Na- and Li-rich cordierite, andalusite and muscovite from the peraluminous magma under moderate P–T conditions (~1.9 kbar and ca. 735°C). The high Li content of cordierite in the SCF is unusual for granitic rocks of intermediate composition.  相似文献   
127.
The Mediterranean wetlands are unique in biological diversity and provide multiple benefits, constituting a great water reserve for the planet and producing biomass and nutrients for the trophic chain. However, the increasing human impact and socio-economic development in recent decades have caused important losses in these ecosystems. This work was carried out in the Natural Park of L’Albufera (Valencia, Spain), which includes a coastal lagoon, marshlands, dunes and pinewoods, surrounded by rice fields and orchard in its non-urbanized part. Despite this great ecological value, it suffers impacts derived from the high human and industrial occupation and the hydrological contributions of the connected irrigation systems. The study focused on the development of a combined methodology, based on environmental forensics principles, with the aim of identifying the presence, flow paths and spatial distribution of illicit drugs entering the Natural Park. It is organized around two major procedures: analysis of 16 water samples and application of Geographical Information Systems (GIS) integrating different sources and data formats, as analysis of 14 drugs of abuse by Liquid Chromatography-Mass Spectrometry techniques, and social and environmental data in either GIS layers or tabular digital formats. Results show that, at present, most analyzed drugs have been identified in all sample points. Besides the population distribution pattern, the traditional irrigation system connected to sewage treatment plant (STP) locations is the way by which illicit substances are introduced into the Natural Park waters.  相似文献   
128.
The rise of total water levels at the coast is caused primarily by three factors that encompass storm surges, tides and wind waves. The accuracy of total water elevation (TWE) forecast depends not only on the cyclonic track and its intensity, but also on the spatial distribution of winds which include its speed and direction. In the present study, the cyclonic winds are validated using buoy winds for the recent cyclones formed in the Bay of Bengal since 2010 using Jelesnianski wind scheme. It is found that the cyclonic winds computed from the scheme show an underestimate in the magnitude and also a mismatch in its direction. Hence, the wind scheme is suitably modified based on the buoy observations available at different locations using a power law which reduces the exponential decay of winds by about 30%. Moreover, the cyclonic wind direction is also corrected by suitably modifying its inflow angle. The significance of modified exponential factor and inflow angle in the computation cyclonic winds is highlighted using statistical analysis. A hydrodynamic finite element-based Advanced Circulation 2D depth integrated (ADCIRC-2DDI) model is used here to compute TWE as a response to combined effect of cyclonic winds and astronomical tides. As contribution of wave setup plays an important role near the coast, a coupled ADCIRC + SWAN is used to perceive the contribution of wind waves on the TWE. The experiments are performed to validate computed surge residuals with available tide gauge data. On comparison of observed surge residuals with the simulations using modified winds from the uncoupled and coupled models, it is found that the simulated surge residuals are better compared, especially with the inclusion of wave effect through the coupled model.  相似文献   
129.
In central Chile, many communities rely on water obtained from small catchments in the coastal mountains. Water security for these communities is most vulnerable during the summer dry season and, from 2010 to 2017, rainfall during the dry season was between 20% and 40% below the long-term average. The rate of decrease in stream flow after a rainfall event is a good measure of the risk of flow decreasing below a critical threshold. This risk of low flow can be quantified using a recession coefficient (α) that is the slope of an exponential decay function relating flow to time since rainfall. A mathematical model was used to estimate the recession coefficient (α) for 142 rainstorm events (64 in summer; 78 in winter) in eight monitored catchments between 2008 and 2017. These catchments all have a similar geology and extend from 35 to 39 degrees of latitude south in the coastal range of south-central Chile. A hierarchical cluster analysis was used to test for differences between the mean value of α for different regions and forest types in winter and summer. The value of α did not differ (p < 0.05) between catchments in winter. Some differences were observed during summer and these were attributed to morphological differences between catchments and, in the northernmost catchments, the effect of land cover (native forest and plantation). Moreover, α for catchments with native forest was similar to those with pine plantations, although there was no difference (p < 0.05) between these and Eucalyptus plantations. The recession constant is a well-established method for understanding the effect of climate and disturbance on low flows and baseflows and can enhance local and regional analyses of hydrological processes. Understanding the recession of flow after rainfall in small headwater catchments, especially during summer, is vital for water resources management in areas where the establishment of plantations has occurred in a drying climate.  相似文献   
130.
Monitoring the temporal variation of solute concentrations in streams at high temporal frequency can play an important role in understanding the hydrological and biogeochemical behaviour of catchments. UV–visible spectrometry is a relatively inexpensive and easily used tool to infer those concentrations in streams at high temporal resolution. However, it is not yet clear which solutes can be modelled with such an in-situ sensor. Here, we installed a UV–visible spectrometer probe (200–750 nm) in a high-altitude tropical Páramo stream to record the wavelength absorbance at a 5-min temporal resolution. For calibration, we simultaneously sampled stream water at a 4-h frequency from February 2018 to March 2019 for subsequent laboratory analysis. Absorbance spectra and laboratory-determined solute concentrations were used to identify the best calibration method and to determine which solute concentrations can be effectively inferred using in situ spectrometry through the evaluation of six calibration methods of different mathematical complexity. Based on the Nash – Sutcliffe efficiency (NSE) and Akaike information criterion metrics, our results suggest that multivariate methods always outperformed simpler strategies to infer solute concentrations. Eleven out of 21 studied solutes (Al, DOC, Ca, Cu, K, Mg, N, Na, Rb, Si and Sr) were successfully calibrated (NSE >0.50) and could be inferred using UV–visible spectrometry even with a reduced daily sampling frequency. It is worth noting that most calibrated solutes were correlated with wavelengths (WLs) in the low range of the spectra (i.e., UV range) and showed relatively good correlation with DOC. The latter suggests that estimation of metal concentrations could be possible in other streams with a high organic load (e.g., peat dominated catchments). In situ operation of spectrometers to monitor water quality parameters at high temporal frequency (sub-hourly) can enhance the protection of human water supplies and aquatic ecosystems as well as providing information for assessing catchment hydrological functioning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号