首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   13篇
  国内免费   1篇
测绘学   5篇
大气科学   7篇
地球物理   47篇
地质学   139篇
海洋学   11篇
天文学   94篇
自然地理   32篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   8篇
  2016年   9篇
  2015年   6篇
  2014年   7篇
  2013年   14篇
  2012年   11篇
  2011年   10篇
  2010年   11篇
  2009年   16篇
  2008年   15篇
  2007年   12篇
  2006年   11篇
  2005年   10篇
  2004年   5篇
  2003年   6篇
  2002年   12篇
  2001年   4篇
  2000年   8篇
  1999年   12篇
  1998年   9篇
  1997年   5篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1986年   5篇
  1985年   8篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1981年   7篇
  1980年   8篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   5篇
  1968年   2篇
  1934年   1篇
  1882年   1篇
  1877年   2篇
排序方式: 共有335条查询结果,搜索用时 15 毫秒
141.
We have observed 23 sources from the Max-Planck Millimetre Bolometer (MAMBO) array 1200-μm survey with SCUBA at 850 μm, detecting 19 of the sources. The sources generally have low values for the ratio of 850- to 1200-μm flux. Two possible explanations for the low values are either that the sources are at very high redshifts or that the global properties of the dust in the MAMBO sources are different from the global properties of dust in low-redshift galaxies. If the former explanation is correct, we estimate that 15 of the MAMBO sources lie at   z > 3  .  相似文献   
142.
The dissolution of siderite (FeCO3) and rhodochrosite (MnCO3) under oxic and anoxic conditions is investigated at 298 K. The anoxic dissolution rate of siderite is 10−8.65 mol m−2 s−1 for 5.5 < pH < 12 and increases as [H+]0.75 for pH < 5.5. The pH dependence is consistent with parallel proton-promoted and water hydrolysis dissolution pathways. Atomic force microscopy (AFM) reveals a change in pit morphology from rhombohedral pits for pH > 4 to pits elongated at one vertex for pH < 4. Under oxic conditions the dissolution rate decreases to below the detection limit of 10−10 mol m−2 s−1 for 6.0 < pH < 10.3, and hillock precipitation preferential to steps is observed in concurrent AFM micrographs. X-ray photoelectron spectroscopy (XPS) and thermodynamic analysis identify the precipitate as ferrihydrite. At pH > 10.3, the oxic dissolution rate is as high as 10−7.5 mol m−2 s−1, which is greater than under the corresponding anoxic conditions. A fast electron transfer reaction between solution O2 or [Fe3+(OH)4] species and surficial >FeII hydroxyl groups is hypothesized to explain the dissolution kinetics. AFM micrographs do not show precipitation under these conditions. Anoxic dissolution of rhodochrosite is physically observed as rhombohedral pit expansion for 3.7 < pH < 10.3 and is chemically explained by parallel proton- and water-promoted pathways. The dissolution rate law is 10−4.93[H+] + 10−8.45 mol m−2 s−1. For 5.8 < pH < 7.7 under oxic conditions, the AFM micrographs show a tabular precipitate growing by preferential expansion along the a-axis, though the macroscopic dissolution rate is apparently unaffected. For pH > 7.7 under oxic conditions, the dissolution rate decreases from 10−8.45 to 10−9.0 mol m−2 s−1. Flattened hillock precipitates grow across the entire surface without apparent morphological influence by the underlying rhodochrosite surface. XPS spectra and thermodynamic calculations implicate the precipitate as bixbyite for 5.8 < pH < 7.7 and MnOOH (possibly feitnkechtite) for pH >7.7.  相似文献   
143.
Over the past six years hog farming in North Carolina has undergone a significant restructuring. For most of this century raising hogs was a casual farm activity found throughout the state. During the past decade hog farming has been transformed along industrial-corporate lines. In the process, the swine population has expanded rapidly (exploded) and simultaneously collapsed in geographical bounds (imploded). This paper examines the linkage between the development of the industrial-corporate hog farming regime, the rapid growth in hog populations, and the geographical concentration of hog production in a newly emerging high-density hog production district in the south central area of the Coastal Plain region.  相似文献   
144.
Fluvial channel geometry classification schemes are commonly restricted in relation to the scale at which the study took place, often due to outcrop limitations or the need to conduct small‐scale detailed studies. A number of classification schemes are present in the literature; however, there is often limited consistency between them, making application difficult. The aim of this study is to address this key problem by describing channel body geometries across a depositional basin to ensure that a wide range of architectures are documented. This was achieved by studying 28 locations over 4000 m of vertical succession in Palaeocene‐aged and Early Eocene‐aged deposits within the Bighorn Basin, Wyoming, USA. Five different channel body geometries have been defined based on the external geometric form, and internal arrangement and nature of storey contacts. These include the massive channel body geometry, semi‐amalgamated channel body geometry, internally amalgamated channel body geometry and offset stacked channel body geometry, which are considered to be subdivisions of the sheet geometry of many other classifications. An isolated channel body geometry has also been recognized alongside splay channel and sheet sandstone geometries in the floodplain facies associations. Field evidence, including the stacking style of storey surfaces, suggests that the different geometries form a continuum. The nature and degree of amalgamation at the storey scale are important in producing the different geometries and are related to the degree of channel migration. It is speculated that this is the result of differences in sediment supply and available accommodation. In contrast to previous schemes, the classification scheme presented here recognizes the importance of transitional geometries. This geometrical range has been recognized because of the basin‐scale nature of the study.  相似文献   
145.
CCD photometry of the NEAR mission fly-by target 253 Mathilde is presented. Measurements taken during 52 nights of observations, from February to June 1995, allow a rotation period of 17.406±0.010 days and a lightcurve amplitude of 0.45±0.02 mag to be determined. A B-V color index of 0.67±0.02 and a V-R of 0.35±0.02 are measured, which are compatible with C-type membership. The determination of the phase relation results in H = 10.28±0.03 and G = 0.12±0.06. Indications that the lightcurve is not strictly singly-periodic are found. A power-spectrum analysis detects a secondary frequency f2 = 0.0322±0.0010 d−1, which is interpreted as evidence for a complex rotation state.  相似文献   
146.
Surficial sediment samples were collected at 47 stations in Little Traverse Bay, Lake Michigan, to determine the geochemical associations between certain rare earth elements (REE's) and trace metals. Each sample was analyzed for carbonate carbon, organic carbon, grain size, and the elements Al, Ca, Ce, Co, Cr, Eu, Fe, Hf, La, and Mn. Two distinct Ce subpopulatins were identified by graphical analysis, and an R-mode factor analysis was applied to data from the “enriched” Ce subpopulation (18 samples). Results show that the REE's and trace metals are primarily enriched in the authigenic phase of these sediments. Partial correlation analyses indicate that the REE's are primarily associated with hydrous Fe oxides relative to organic matter in this phase. The ratio of Ce/La concentrations increased markedly from the bay margins to the central trough of the bay, indicating that Ce, similar to Fe, exhibits a variable oxidation state in the authigenic phase of nearshore fine-grained sediments. The results of the present study suggest that the REE's and trace metals behave coherently in the authigenic phase of recent lacustrine sediments, and the REE's may be useful as geochemical tracers to differentiate between trace metal enrichments in surface sediments as a result of diagenesis and pollution loadings.  相似文献   
147.
The Kwakshua Watersheds Observatory (KWO) is an integrative watersheds observatory on the coastal margin of a rain-dominated bog-forest landscape in British Columbia (BC), Canada. Established in 2013, the goal of the KWO is to understand and model the flux of terrestrial materials from land to sea – the origins, pathways, processes and ecosystem consequences – in the context of long-term environmental change. The KWO consists of seven gauged watersheds and a network of observation sites spanning from land to sea and along drainage gradients within catchments. Time-series datasets include year-round measurements of weather, soil hydrology, streamflow, aquatic biogeochemistry, microbial ecology and nearshore oceanographic conditions. Sensor measurements are recorded every 5 min and water samples are collected approximately monthly. Additional observations are made during high-flow conditions. We used remote sensing to map watershed terrain, drainage networks, soils and terrestrial ecosystems. The watersheds range in size from 3.2 to 12.8 km2, with varying catchment characteristics that influence hydrological and biogeochemical responses. Despite local variation, the overall study area is a global hotspot for yields of dissolved organic carbon, dissolved organic nitrogen and dissolved iron at the coastal margin. This observatory helps fill an important gap in the global network of observatories, in terms of spatial location (central coast of BC), climate (temperate oceanic), hydrology (very high runoff, pluvial regime), geology (igneous intrusive, glacially scoured), vegetation (bog rainforest) and soils (large stores of organic carbon).  相似文献   
148.
The objective of this research was to develop and parameterise a physically justified yet low‐parameter model to quantify observed changes in surface runoff ratios with hillslope length. The approach starts with the assumption that a unit of rainfall‐excess runoff generated at a point is a fraction β of precipitation P (m) which travels some variable distance down a slope before reinfiltrating, depending on the local rainfall, climate, soils, etc. If this random distance travelled Y is represented by a distribution, then a survival function will describe the probability of this unit of runoff travelling further than some distance x (m). The total amount of per unit width runoff Q (m2) flowing across the lower boundary of a slope of length λ (m) may be considered the sum of all the proportions of the units of rainfall excess runoff integrated from the lower boundary x = 0 to the upper boundary x = λ of the slope. Using these assumptions we derive a model Q(λ) = βPμλ/(μ + λ), > 0, 0 ≤ β ≤ 1, λ ≥ 0) that describes the change in surface runoff with slope length, where μ (m) is the mean of the random variable Y. Dividing both sides of this equation by yields a simple two‐parameter equation for the dimensionless hillslope runoff ratio Qh(λ) = βμ/(μ + λ). The model was parameterised with new rainfall and runoff data collected from three replicates of bounded 2 m wide plots of four different lengths (0.5, 1.0, 2.0 and 4.0 m) for 2 years from a forested SE Australian site, and with 32 slope length–runoff data sets from 12 other published studies undertaken between 1934 and 2010. Using the parameterised model resulted in a Nash and Sutcliffe statistic between observed and predicted runoff ratio (for all data sets combined) of 0.93, compared with –2.1 when the runoff ratio was fixed at the value measured from the shortest plot. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
149.
In response to the observations of the ultravioler deficiencies shown by all of the outer planets and Titan, models have been proposed to explain the low albedos by absorption by particles in the upper atmospheres of these objects. These particles are generally believed to be photochemically formed from gases in the upper atmospheres, primarily methane and hydrogen. Such processes may also be operative on Titan. The results of some laboratory experiments of the proton irradiation of mixtures of gases including CH4 H2, NH3, etc., have shown that liquid and solid materials are produced that are strong ultraviolet absorbers. However, the material produced from the CH4 + H2 mixture was colorless, indicating that species containing elements other than carbon and hydrogen are necessary for the production of color. Two such elements are nitrogen (as NH3 or N2) and sulfur (as H2S) and colored materials have been produced from such mixtures. None of these materials has spectral properties identical to those shown by the planets. Therefore it is necessary that mixtures (and/or cloud layers) of the photochemical materials be present.  相似文献   
150.
The formation process(es) responsible for creating the observed geologically recent gully features on Mars has remained the subject of intense debate since their discovery. We present new data and analysis of northern hemisphere gullies from Mars Global Surveyor data which is used to test the various proposed mechanisms of gully formation. We located 137 Mars Orbiter Camera (MOC) images in the northern hemisphere that contain clear evidence of gully landforms and analyzed these images in combination with Mars Orbiter Laser Altimeter (MOLA) and Thermal Emission Spectrometer (TES) data to provide quantitative measurements of numerous gully characteristics. Parameters we measured include apparent source depth and distribution, vertical and horizontal dimensions, slopes, orientations, and present-day characteristics that affect local ground temperatures. Northern hemisphere gullies are clustered in Arcadia Planitia, Tempe Terra, Acidalia Planitia, and Utopia Planitia. These gullies form in craters (84%), knobby terrain (4%), valleys (3%), other/unknown terrains (9%) and are found on all slope orientations although the majority of gullies are equator-facing. Most gullies (63%) are associated with competent rock strata, 26% are not associated with strata, and 11% are ambiguous. Assuming thermal conductivities derived from TES measurements as well as modeled surface temperatures, we find that 95% of the gully alcove bases with adequate data coverage lie at depths where subsurface temperatures are greater than 273 K and 5% of the alcove bases lie within the solid water regime. The average alcove length is 470 m and the average channel length is 690 m. Based on a comparison of measured gully features with predictions from the various models of gully formation, we find that models involving carbon dioxide, melting ground ice in the upper few meters of the soil, dry landslide, and surface snowmelt are the least likely to describe the formation of the martian gullies. Although some discrepancies still exist between prediction and observation, the shallow and deep aquifer models remain as the most plausible theories. Interior processes involving subsurface fluid sources are generally favored over exogenic processes such as wind and snowfall for explaining the origin of the martian gullies. These findings gleaned from the northern hemisphere data are in general agreement with analyses of gullies in the southern hemisphere [Heldmann, J.L., Mellon, M.T., 2004. Icarus 168, 285-304].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号