首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   613篇
  免费   23篇
  国内免费   3篇
测绘学   44篇
大气科学   42篇
地球物理   142篇
地质学   200篇
海洋学   20篇
天文学   112篇
综合类   5篇
自然地理   74篇
  2023年   4篇
  2022年   5篇
  2021年   12篇
  2020年   12篇
  2019年   21篇
  2018年   19篇
  2017年   18篇
  2016年   28篇
  2015年   22篇
  2014年   25篇
  2013年   50篇
  2012年   37篇
  2011年   23篇
  2010年   25篇
  2009年   39篇
  2008年   26篇
  2007年   30篇
  2006年   22篇
  2005年   33篇
  2004年   23篇
  2003年   19篇
  2002年   23篇
  2001年   16篇
  2000年   15篇
  1999年   10篇
  1998年   4篇
  1997年   6篇
  1996年   7篇
  1995年   7篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1987年   6篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
排序方式: 共有639条查询结果,搜索用时 15 毫秒
51.
Hydrothermal simulations are used to provide insight into the subsurface thermal regime of the Perth metropolitan area (PMA) in Western Australia. High average permeabilities and estimated fluid flow rates in shallow aquifers of the PMA suggest that advection and convection may occur in these aquifers. These processes are simulated, using a new geological model of the PMA to constrain the geometry of aquifers, aquitards and faults. The results show that advection has a strong influence on subsurface temperature, especially in the north of the PMA, where aquifer recharge creates an area of anomalously low temperature. Convection may be important, depending on the permeability of the Yarragadee Aquifer. If convection occurs, it creates thermal highs and lows with a spacing of approximately 5 km. Some of these thermal anomalies migrate over geological time due to coupling between advection and convection, but they are stationary on human timescales. Fault permeability influences the pattern of convection. Advection and convection cause variations in the geothermal gradient which cannot be predicted by conductive models; therefore, these processes should be considered in any model that is used for assessment of geothermal resources in the PMA.  相似文献   
52.
Various models have been suggested concerning the origin and evolution of the earth's atmosphere. An estimate of the nitrogen content of the mantle could further constrain atmospheric models. Total nitrogen content was determined by thermal neutron activation analysis via 14N(n,p)14C. The 14C was converted to carbon dioxide and counted in miniature low level proportional counters. The total nitrogen content of U.S.G.S. standards BCR-1 and G-2 as determined by different laboratories is variable, probably due to atmospheric adsorption by the finely ground samples. Total nitrogen content was determined in deep sea basalt glasses from three regions: East Pacific Rise (15 ± 4, 18 ± 4, and 7 ± ppm2 N), Mid-Atlantic Rift (FAMOUS Region:22 ± 5, 18 ± 3, and 10 ± 2 ppm N) and the Juan de Fuca Ridge (17 ± 4 ppm N). Matrix material from the same samples as the glasses was available from the East Pacific Rise (37 ± 6, 26 ± 4, and 34 ± 6 ppm N) and the Mid-Atlantic Rift (39 ± 4 ppm N) which are about 50 to 100% greater than the associated glasses. The increased matrix abundance may be due to incorporation of chemically bound nitrogen from sea water rather than dissolved molecular nitrogen. The nitrogen content of the FAMOUS samples are inconsistent with the model of Langmuir et al. (1977) for petrogenesis based on trace element data. Factors which can affect the observed nitrogen content in the basalts and the interpretation in terms of the mantle nitrogen abundance are discussed (e.g. partial melting and degassing of the basalts). A lower limit of about 2 ppm N in the mantle can be estimated.  相似文献   
53.
The Halls Creek Orogen in northern Australia records the Palaeoproterozoic collision of the Kimberley Craton with the North Australian Craton. Integrated structural, metamorphic and geochronological studies of the Tickalara Metamorphics show that this involved a protracted episode of high‐temperature, low‐pressure metamorphism associated with intense and prolonged mafic and felsic intrusive activity in the interval ca 1850–1820 Ma. Tectonothermal development of the region commenced with an inferred mantle perturbation event, probably at ca 1880 Ma. This resulted in the generation of mafic magmas in the upper mantle or lower crust, while upper crustal extension preceded the rapid deposition of the Tickalara sedimentary protoliths. An older age limit for these rocks is provided by a psammopelitic gneiss from the Tickalara Metamorphics, which yield a 207Pb/206Pb SHRIMP age of 1867 ± 4 Ma for the youngest detrital zircon suite. Voluminous layered mafic intrusives were emplaced in the middle crust at ca 1860–1855 Ma, prior to the attainment of lower granulite facies peak metamorphic conditions in the middle crust. Locally preserved layer‐parallel D1 foliations that were developed during prograde metamorphism were pervasively overprinted by the dominant regional S2 gneissosity coincident with peak metamorphism. Overgrowths on zircons record a metamorphic 207Pb/206Pb age of 1845 ± 4 Ma. The S2 fabric is folded around tight folds and cut by ductile shear zones associated with D3 (ca 1830 Ma), and all pre‐existing structures are folded around large‐scale, open F4 folds (ca 1820 Ma). Construction of a temperature‐time path for the mid‐crustal section exposed in the central Halls Creek Orogen, based on detailed SHRIMP zircon data, key field relationships and petrological evidence, suggests the existence of one protracted thermal event (>400–500°C for 25–30 million years) encompassing two deformation phases. Protoliths to the Tickalara Metamorphics were relatively cold (~350°C) when intruded by the Fletcher Creek Granite at ca 1850 Ma, but were subsequently heated rapidly to 700–800°C during peak metamorphism at ca 1845 Ma. Repeated injection of mafic magmas caused multiple remelting of the metasedimentary wall rocks, with mappable increases in leucosome volume that show a strong spatial relationship to these intrusives. This mafic igneous activity prolonged the elevated geotherm and ensured that the rocks remained very hot (≥650°C) for at least 10 million years. The Mabel Downs Tonalite was emplaced during amphibolite facies metamorphism, with intrusion commencing at ca 1835 Ma. Its compositional heterogeneity, and the presence of mutual cross‐cutting relations between ductile shear zones and multiple injections of mingled magma suggest that it was emplaced syn‐D3. Broad‐scale folding attributable to F4 was accompanied by widespread intrusion of granitoids, and F4 fold limbs are truncated by large, mostly brittle retrograde S4 shear zones.  相似文献   
54.
55.
Crystal-plastic olivine deformation to produce subgrain boundaries composed of edge dislocations is an inevitable consequence of asthenospheric mantle flow. Although crystal-plastic deformation and serpentinization are spatio-temporally decoupled, we identified compositional readjustments expressed on the micrometric level as a striped Fe-enriched ( [`(X)]\textFe \bar{X}_{\text{Fe}}  = 0.24 ± 0.02 (zones); 0.12 ± 0.02 (bulk)) or Fe-depleted ( [`(X)]\textFe \bar{X}_{\text{Fe}}  = 0.10 ± 0.01 (zones); 0.13 ± 0.01 (bulk)) zoning in partly serpentinized olivine grains from two upper mantle sections in Norway. Focused ion beam sample preparation combined with transmission electron microscopy (TEM) and aberration-corrected scanning TEM, enabling atomic-level resolved electron energy-loss spectroscopic line profiling, reveals that every zone is immediately associated with a subgrain boundary. We infer that the zonings are a result of the environmental Fe2+Mg−1 exchange potential during antigorite serpentinization of olivine and the drive toward element exchange equilibrium. This is facilitated by enhanced solid-state diffusion along subgrain boundaries in a system, which otherwise re-equilibrates via dissolution-reprecipitation. Fe enrichment or depletion is controlled by the silica activity imposed on the system by the local olivine/orthopyroxene mass ratio, temperature and the effect of magnetite stability. The Fe-Mg exchange coefficients K\textD\textAtg/\textOl K_{\text{D}}^{{{\text{Atg}}/{\text{Ol}}}} between both types of zoning and antigorite display coalescence toward exchange equilibrium. With both types of zoning, Mn is enriched and Ni depleted compared with the unaffected bulk composition. Nanometer-sized, heterogeneously distributed antigorite precipitates along olivine subgrain boundaries suggest that water was able to ingress along them. Crystallographic orientation relationships gained via electron backscatter diffraction between olivine grain domains and different serpentine vein generations support the hypothesis that serpentinization was initiated along olivine subgrain boundaries.  相似文献   
56.
A stochastic channel embedded in a background facies is conditioned to data observed at wells. The background facies is a fixed rectangular box. The model parameters consist of geometric parameters that describe the shape, size, and location of the channel, and permeability and porosity in the channel and nonchannel facies. We extend methodology previously developed to condition a stochastic channel to well-test pressure data, and well observations of the channel thickness and the depth of the top of the channel. The main objective of this work is to characterize the reduction in uncertainty in channel model parameters and predicted reservoir performance that can be achieved by conditioning to well-test pressure data at one or more wells. Multiple conditional realizations of the geometric parameters and rock properties are generated to evaluate the uncertainty in model parameters. The ensemble of predictions of reservoir performance generated from the suite of realizations provides a Monte Carlo estimate of the uncertainty in future performance predictions. In addition, we provide some insight on how prior variances, data measurement errors, and sensitivity coefficients interact to determine the reduction in model parameters obtained by conditioning to pressure data and examine the value of active and observation well data in resolving model parameters.  相似文献   
57.
Mass wasting at continental margins on a global scale during the Middle Ordovician has recently been related to high meteorite influx. Although a high meteorite influx during the Ordovician should not be neglected, we challenge the idea that mass wasting was mainly produced by meteorite impacts over a period of almost 10 Ma. Having strong arguments against the impact-related hypothesis, we propose an alternative explanation, which is based on a re-evaluation of the mass wasting sites, considering their plate-tectonic distribution and the global sea level curve. A striking and important feature is the distribution of most of the mass wasting sites along continental margins characterised by periods of magmatism, terrane accretion and continental or back-arc rifting, respectively, related to subduction of oceanic lithosphere. Such processes are commonly connected with seismic activity causing earthquakes, which can cause downslope movement of sediment and rock. Considering all that, it seems more likely that most of this mass wasting was triggered by earthquakes related to plate-tectonic processes, which caused destabilisation of continental margins resulting in megabreccias and debris flows. Moreover, the period of mass wasting coincides with sea level drops during global sea level lowstand. In some cases, sea level drops can release pore-water overpressure reducing sediment strength and hence promoting instability of sediment at continental margins. Reduced pore-water overpressure can also destabilise gas hydrate-bearing sediment, causing slope failure, and thus resulting in submarine mass wasting. Overall, the global mass wasting during the Middle Ordovician does not need meteoritic trigger.  相似文献   
58.
59.
The Ernest Henry Cu–Au deposit was formed within a zoned, post-peak metamorphic hydrothermal system that overprinted metamorphosed dacite, andesite and diorite (ca 1740–1660 Ma). The Ernest Henry hydrothermal system was formed by two cycles of sodic and potassic alteration where biotite–magnetite alteration produced in the first cycle formed ca 1514±24 Ma, whereas paragenetically later Na–Ca veining formed ca 1529 +11/−8 Ma. These new U–Pbtitanite age dates support textural evidence for incursion of hydrothermal fluids after the metamorphic peak, and overlap with earlier estimates for the timing of Cu–Au mineralization (ca 1540–1500 Ma). A distal to proximal potassic alteration zone correlates with a large (up to 1.5 km) K–Fe–Mn–Ba enriched alteration zone that overprints earlier sodic alteration. Mass balance analysis indicates that K–Fe–Mn–Ba alteration—largely produced during pre-ore biotite- and magnetite-rich alteration—is associated with K–Rb–Cl–Ba–Fe–Mn and As enrichment and Na, Ca and Sr depletion. The aforementioned chemical exchange almost precisely counterbalances the mass changes associated with regional Na–Ca alteration. This initial transition from sodic to potassic alteration may have been formed during the evolution of a single fluid that evolved via alkali exchange during progressive fluid-rock interaction. Cu–Au ore, dominated by co-precipitated magnetite, minor specular hematite, and chalcopyrite as breccia matrix, forms a pipe-like body at the core of a proximal alteration zone dominated by K-feldspar alteration. Both the core and K-feldspar alteration overprint Na–Ca alteration and biotite–magnetite (K–Fe) alteration. Ore was associated with the concentration of a diverse range of elements (e.g. Cu, Au, Fe, Mo, U, Sb, W, Sn, Bi, Ag, F, REE, K, S, As, Co, Ba and Ca). Mineralization also involved the deposition of significant barite, K(–Ba)–feldspar, calcite, fluorite and complexly zoned pyrite. The complexly zoned pyrite and variable K–(Ba)–feldspar versus barite associations are interpreted to indicate fluctuating sulphur and/or barium supply. Together with the alteration zonation geochemistry and overprinting criteria, these data are interpreted to indicate that Cu–Au mineralization occurred as a result of fluid mixing during dilation and brecciation, in the location of the most intense initial potassic alteration. A link between early alteration (Na–Ca and K–Fe) and the later K-feldspathization and the Cu–Au ore is possible. However, the ore-related enrichments in particular elements (especially Ba, Mn, As, Mo, Ag, U, Sb and Bi) are so extreme compared with earlier alteration that another fluid, possibly magmatic in origin, contributed the diverse element suite geochemically independently of the earlier stages. Structural focussing of successive stages produced the distinctive alteration zoning, providing a basis both for exploration for similar deposits, and for an understanding of ore genesis.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号