首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   26篇
  国内免费   3篇
测绘学   44篇
大气科学   42篇
地球物理   140篇
地质学   199篇
海洋学   20篇
天文学   112篇
综合类   5篇
自然地理   69篇
  2023年   4篇
  2022年   5篇
  2021年   12篇
  2020年   12篇
  2019年   21篇
  2018年   19篇
  2017年   17篇
  2016年   28篇
  2015年   22篇
  2014年   24篇
  2013年   50篇
  2012年   37篇
  2011年   21篇
  2010年   24篇
  2009年   39篇
  2008年   24篇
  2007年   30篇
  2006年   22篇
  2005年   32篇
  2004年   23篇
  2003年   19篇
  2002年   23篇
  2001年   16篇
  2000年   15篇
  1999年   10篇
  1998年   4篇
  1997年   6篇
  1996年   7篇
  1995年   7篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1987年   6篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
排序方式: 共有631条查询结果,搜索用时 593 毫秒
161.
Subfossil chironomid analysis was applied to a sediment core from Sägistalsee, a small lake at present-day tree-line elevation in the Swiss Alps. During the whole 9000-year stratigraphy the chironomid fauna was dominated by taxa typical of alpine lakes. Major faunistic trends were caused by changes in accumulation rates of three taxa, namely Procladius, Stictochironomus, and Tanytarsus lugens-type. In the early Holocene Procladius was the dominant taxon. In younger samples, Stictochironomus tended to have as high or higher abundances and both taxa showed an increase in accumulation rates. A possible cause of this succession is the decrease of lake-water depth due to infilling of the lake basin and changes in associated limnological parameters. The immigration of Picea (spruce) at ca. 6500 cal. 14C yrs BP and the resulting denser woodlands in the lake's catchment may have promoted this trend. During three phases, from ca. 70–1450, 1900–2350, and 3500–3950 cal. BP, remains of Procladius, Stictochironomus, and Tanytarsus lugens-type are absent from the lake sediment, whereas other typical lake taxa and stream chironomids show no change in accumulation rate. Together with sediment chemistry data, this suggests that increased oxygen deficits in the lake's bottom water during these intervals caused the elimination of chironomids living in the deepest part of the lake. All three periods coincide with increased human activity in the catchment, as deduced from palaeobotanical evidence. Therefore, enhanced nutrient loading of the lake due to the presence of humans and their livestock in the catchment is the most likely cause of the increased anoxia. The chironomid fauna reacted the same way to intensive pasturing during the last ca. 1500 years as to Bronze Age clear-cutting and more moderate pasturing during the Bronze, Iron, and Roman Ages, suggesting that alpine lake ecosystems can be extremely sensitive to human activity in the catchment. On the other hand, the chironomid assemblages show a considerable amount of resilience to human disturbance, as the chironomid fauna reverted to the pre-impact stage after the first two periods of human activity. In recent years, even though pasturing decreased again, the chironomid fauna has only partly recovered. This is possibly due to other human-induced changes in the lake ecosystem, e.g., the stocking of the lake with fish. The chironomid stratigraphy is difficult to interpret climatologically as the strongest changes in chironomid-inferred temperatures coincide with periods of intensive human activity in the catchment.  相似文献   
162.
163.
The exchanges of mercury between surface and air are of significance in the biogeochemical cycling of Hg in the environment, but there are still few reliable data on air/surface exchange in aquatic systems. Field measurement campaigns over seawater surface at Kristineberg Marine Research Station (KMRS) and over Hovg?rds?n River surface at Knobesholm in southwestern Sweden were conducted to measure mercury flux using a dynamic flux chamber technique coupled with automatic mercury vapor-phase analyzers. Both sites show net emissions during summer time. Mercury fluxes measured over both river and seawater surfaces exhibit a consistently diurnal pattern with maximum fluxes during the daytime period and minimum fluxes during the nighttime period. At freshwater site, mercury flux is strongly correlated with the intensity of net solar radiation, and negatively correlated with relative humidity. A typical exponential relationship between mercury flux and water temperature was observed at freshwater measurement site. At seawater site, a strong correlation between mercury flux and intensity of solar radiation was obtained. The driving force of mercury emission from water surface to air is the super-saturation of dissolved gaseous mercury in aqueous phase.  相似文献   
164.
For the simulation of winter hydrological processes a gap in the availability of flow models existed: one either had the choice between (1) physically-based and fully-integrated, but computationally very intensive, or (2) simplified and compartamentalized, but computationally less expensive, simulators. To bridge this gap, we here present the integration of a computationally efficient representation of winter hydrological processes (snowfall, snow accumulation, snowmelt, pore water freeze–thaw) in a fully-integrated surface water-groundwater flow model. This allows the efficient simulation of catchment-scale hydrological processes in locations significantly influenced by winter processes. Snow accumulation and snowmelt are based on the degree-day method and pore water freeze–thaw is calculated with a vertical heat conduction approach. This representation of winter hydrological processes is integrated into the fully-coupled surface water-groundwater flow model HydroGeoSphere. A benchmark for pore water freeze–thaw as well as two illustrative examples are provided.  相似文献   
165.
The textbook concept of an equilibrium landscape, which posits that soil production and erosion are balanced and equal channel incision, is rarely quantified for natural systems. In contrast to mountainous, rapidly eroding terrain, low relief and slow-eroding landscapes are poorly studied despite being widespread and densely inhabited. We use three field sites along a climosequence in South Africa to quantify very slow (2-5 m/My) soil production rates that do not vary across hillslopes or with climate. We show these rates to be indistinguishable from spatially invariant catchment-average erosion rates while soil depth and chemical weathering increase strongly with rainfall across our sites. Our analyses imply landscape-scale equilibrium although the dominant means of denudation varies from physical weathering in dry climates to chemical weathering in wet climates. In the two wetter sites, chemical weathering is so significant that clay translocates both vertically in soil columns and horizontally down hillslope catenas, resulting in particle size variation and the accumulation of buried stone lines at the clay-rich depth. We infer hundred-thousand-year residence times of these stone lines and suggest that bioturbation by termites plays a key role in exhuming sediment into the mobile soil layer from significant depths below the clay layer. Our results suggest how tradeoffs in physical and chemical weathering, potentially modulated by biological processes, shape slowly eroding, equilibrium landscapes. © 2019 John Wiley & Sons, Ltd.  相似文献   
166.
Obstacle marks are sedimentary bedforms, typically composed of an upstream local scour hole and a downstream sediment accumulation in the vicinity of an obstruction that is exposed to a current. However, specific morphologies are variable in fluvial, coastal and submarine environments. Although obstacle marks and the phenomenon of local scouring are subject to different scientific disciplines, the objectives of investigations are rather incoherent and no systematic framework for analysing and evaluating boundary condition control exists yet, especially concerning limited knowledge of the cause and effect relationship of obstacle mark formation at instream boulders or vegetation elements in variable environmental conditions. Thus, a parameter framework is developed which identifies a spectrum of extrinsic and intrinsic boundary conditions that control the major process dynamics of obstacle mark formation. The framework is composed of dimensionless control parameters that are separated by a hierarchical order regarding their significance for obstacle mark formation. Primary control parameters determine the geometrical scale of flow field at the obstacle, and therefore control the potential maximum size of the obstacle. Secondary control parameters affect the dynamics of the flow field in geometrical scale and limit the potential maximum size of the emerging sedimentary structure if thresholds are crossed. The framework is supposed to be a foundation for subsequent quantification and determination of thresholds by systematic laboratory studies. To elucidate this, flume-based research is presented, evaluating the influence of different flow levels at boulder-like obstacles of different shapes. The results show that obstacle mark dimensions were maximized at shallow flow depths compared to obstacle dimensions, while deep flows at submerged boulder-like obstructions caused considerably smaller obstacle marks. In interdependency with a rounded and more streamlined obstacle shape, deep flows even cause a deviation of morphology if the flow depth above an obstacle exceeds 1.6 times the obstacle's dimensions. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
167.
Hydrous alteration of olivine macrocrysts in a Martian olivine phyric basalt, NWA 10416, and a terrestrial basalt from southern Colorado are examined using SEM, EPMA, TEM, and µXRD techniques. The olivines in the meteorite contain linear nanotubes of hydrous material, amorphous areas, and fluid dissolution textures quite distinct from alteration identified in other Martian meteorites. Instead, they bear resemblance to terrestrial deuteric alteration features. The presence of the hydrous alteration phase Mg‐laihunite within the olivines has been confirmed by µXRD analysis. The cores of the olivines in both Martian and terrestrial samples are overgrown by unaltered rims whose compositions match those of a separate population of groundmass olivines, suggesting that the core olivines are xenocrysts whose alteration preceded crystallization of the groundmass. The terrestrial sample is linked to deep crustal metasomatism and the “ignimbrite flare‐up” of the Oligocene epoch. The comparison of the two samples suggests the existence of an analogous relatively water‐rich magmatic reservoir on Mars.  相似文献   
168.
Minibasins are fundamental components of many salt-bearing sedimentary basins, where they may host large volumes of hydrocarbons. Although we understand the basic mechanics governing their subsidence, we know surprisingly little of how minibasins subside in three-dimensions over geological timescales, or what controls such variability. Such knowledge would improve our ability to constrain initial salt volumes in sedimentary basins, the timing of salt welding and the distribution and likely charging histories of suprasalt hydrocarbon reservoirs. We use 3D seismic reflection data from the Precaspian Basin, onshore Kazakhstan to reveal the subsidence histories of 16, Upper Permian-to-Triassic, suprasalt minibasins. These minibasins subsided into a Lower-to-Middle Permian salt layer that contained numerous relatively strong, clastic-dominated minibasins encased during an earlier, latest Permian phase of diapirism; because of this, the salt varied in thickness. Suprasalt minibasins contain a stratigraphic record of symmetric (bowl-shaped units) and then asymmetric (wedge-shaped units) subsidence, with this change in style seemingly occurring at different times in different minibasins, and most likely prior to welding. We complement our observations from natural minibasins in the Precaspian Basin with results arising from new physical sandbox models; this allows us to explore the potential controls on minibasin subsidence patterns, before assessing which of these might be applicable to our natural example. We conclude that due to uncertainties in the original spatial relationships between encased and suprasalt minibasins, and the timing of changes in style of subsidence between individual minibasins, it is unclear why such complex temporal and spatial variations in subsidence occur in the Precaspian Basin. Regardless of what controls the observed variability, we argue that vertical changes in minibasin stratigraphic architecture may not record the initial (depositional) thickness of underlying salt or the timing of salt welding; this latter point is critical when attempting to constrain the timing of potential hydraulic communication between sub-salt source rocks and suprasalt reservoirs. Furthermore, temporal changes in minibasin subsidence style will likely control suprasalt reservoir distribution and trapping style.  相似文献   
169.
We carried out 16 collision experiments in the drop tower in Bremen, Germany. Dust projectiles and solid projectiles of several mm in size impacted a dust target 5 cm in depth and width at velocities between 3.5 and 21.5 m/s. For solid impactors we found significant mass loss on the front (impact) side of the target. Mass loss depended on the impact velocity and projectile type (solid sphere or dust) and was up to 35 times the projectile mass for targets of the lowest tensile strength. Typical fragment velocities on the front side of the target ranged from 3 to 12 cm/s. The ejecta velocity was independent of the impact velocity but it increased with projectile mass. On the back side of the target (opposite to the impact side) mass was ejected from the target above a certain threshold impact velocity. Ejection velocity on the back side increased with impact velocity and is larger for solid projectiles than for dust projectiles. In one case a slightly stronger target gained mass in a slow dust-dust collision. We verified that collisions of dust projectiles with compact, very strong dust targets lead to a more massive target accreting part of the projectile. Applied to planetesimal formation, the experiments suggest that the maximum possible ejecta velocity from a body of several cm in size after a collision is small. Ejecta were slow enough that they were reaccreted by means of gas flow if large pores were part of the body's morphology. While very weak bodies cannot grow in the primary collision at the given velocities, this can lead to growth by secondary collisions. Slight compression, which could result from preceding collisions, might lead to immediate growth of a body in slow collisions by adding projectile mass.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号