首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   12篇
  国内免费   5篇
测绘学   7篇
大气科学   47篇
地球物理   24篇
地质学   62篇
海洋学   13篇
天文学   22篇
自然地理   13篇
  2022年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   11篇
  2013年   15篇
  2012年   13篇
  2011年   8篇
  2010年   6篇
  2009年   12篇
  2008年   6篇
  2007年   8篇
  2006年   9篇
  2005年   11篇
  2004年   7篇
  2003年   3篇
  2002年   9篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有188条查询结果,搜索用时 140 毫秒
111.
Petermann Glacier is a marine-terminating outlet glacier that had a 70 km-long floating ice tongue prior to a~270 km2calving event that was observed from satellite sensors in August 2010,shortening the ice tongue by~27 km.Further,in July 2012,another 10 km was lost through calving.In order to understand these events in perspective,here the authors perform a long-term data analysis of Petermann Glacier calving-front variability and ice velocity for each year in the 1990s–2000s,supplemented by available observations from the previous three decades.Five major(on the order of 100 km2)calving events are identified,with~153 km2calved from1959 to 1961,~168 km2in 1991,~71 km2in 2001,~270 km2in 2010,and~130 km2in 2012—as well as~31km2calved in 2008.The increased frequency of major calving events in recent years has left the front terminus position retreated nearly 25 km beyond the range of observed in previous decades.In contrast,stable ice-dynamics are suggested from ice-velocity measurements made each year between 1993–2012,which are on average1063 m yr–1,with limited interannual variability and no significant trend;moreover,there is no apparent relationship between ice-velocity variability and calving events.The degree to which the massive calving events in 2010and 2012 represent natural episodic variability or a response to atmospheric and/or oceanic changes remains speculative;however,melt-induced weakening of the floating ice tongue in recent years is strongly suggested.  相似文献   
112.
Here we present two new metrics used for comparing climate impacts of emissions of different climate forcers: the Global Sea level rise Potential (GSP) and the Integrated Global Sea level rise Potential (IGSP). The GSP represents the Sea Level Rise (SLR) at a given time horizon due to an emission pulse of a forcer; the IGSP is similar but represents the time integrated SLR up to a given point in time. The GSP and IGSP are presented relative to the SLR caused by a comparable emission pulse of carbon dioxide. The metrics are assessed using an Upwelling-Diffusion Energy Balance Model (UDEBM). We focus primarily on the thermosteric part of SLR, denoted GSPth. All of the examined climate forcers – even black carbon, a very Short-Lived Climate Forcer (SLCF) – have considerable influence on the thermosteric SLR on the century time scale. For a given time horizon and forcer, GSPth lies in between the corresponding metric values obtained using Global Warming Potential (GWP) and Global Temperature change Potential (GTP), whereas IGSPth ends up in the opposite end to GTP in the spectrum of compared metrics. GSPth and IGSPth are more sensitive for SLCFs than for the long-lived Greenhouse Gases (GHGs) to changes in the parameterization of the model (under the time horizons considered here). We also use a Semi-Empirical (SE) model to estimate the full SLR, and corresponding GSPSE and IGSPSE, as alternatives to the thermosteric approach. For SLCFs, GSPSE is greater than GSPth for all time horizons considered, while the opposite holds for long-lived GHGs such as SF6.  相似文献   
113.
114.
115.
We consider the origin of the anomalously high intensity of the ultraviolet Fe II λλ2507/2509 Å lines observed with high spatial and spectral resolutions from gas blobs (GBs) near η Carinae. This rare effect in stellar spectra is attributable to a combination of several factors: (1) the high hydrogen density(>108 cm?3) that ensures the blockingof the Lyman continuum by GBs and, accordingly, the formation of a cold H I region with completely ionized Fe atoms; (2) the small distance between the GBs and the central star that ensures a high (>8000–10000 K) Lyα H spectral temperature, which photoexcites Fe II selectively; and (3) the population of Fe II levels and, accordingly, the opening of a stimulated emission channel, which together with spontaneous transitions creates a radiative cycle where a single Fe II ion can multiply absorb Lyα emission.  相似文献   
116.
Biver  N.  Bockelée-Morvan  D.  Colom  P.  Crovisier  J.  Germain  B.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Moreno  R.  Paubert  G.  Wink  J.  Despois  D.  Lis  D. C.  Mehringer  D.  Benford  D.  Gardner  M.  Phillips  T. G.  Gunnarsson  M.  Rickman  H.  Winnberg  A.  Bergman  P.  Johansson  L. E. B.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):5-11
C/1995 O1 (Hale-Bopp) has been observed on a regular basis since August 1995 at millimetre and submillimetre wavelengths using IRAM, JCMT, CSO and SEST radio telescopes. The production rates of eight molecular species (CO, HCN, CH3OH, H2CO,H2S, CS, CH3CN,HNC) have been monitored as a function of heliocentric distance(rh from 7 AU pre-perihelion to 4 AU post-perihelion. As comet Hale-Bopp approached and receded from the Sun, these species displayed different behaviours. Far from the Sun, the most volatile species were found in general relatively more abundant in the coma. In comparison to other species, HNC, H2CO and CS showed a much steeper increase of the production rate with decreasing rh. Less than 1.5 AU from the Sun, the relative abundances were fairly stable and approached those found in other comets near 1 AU. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about10 K at 7 AU to 110 K around perihelion. The expansion velocity of the gaseous species, derived from the line shapes, also increased with a law close torh 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
117.
In quasi‐brittle material the complex process of decohesion between particles in microcracks and localization of the displacement field into macrocracks is limited to a narrow fracture zone, and it is often modelled with cohesive crack models. Since the anisotropic nature of the decohesion process in separation and sliding is essential, it is particularly focused in this paper. Moreover, for cyclic and dynamic loading the unloading, load reversal (including crack closure) and rate dependency are essential features that are included in a new model. The modelling of degradation is based on a ‘localized’ version of anisotropic continuum damage coupled to inelasticity. The concept of strain energy equivalence between the states in the effective and nominal settings is adopted in order to define the free energy of the interface. The proposed fracture criterion is of the Mohr type, with a smooth transition of the failure and kinematics (slip and dilatation) characteristics between tension and shear. The chosen potential, of the Lemaitre‐type, for evolution of the dissipative processes is additively decomposed into plastic and damage parts, and non‐associative constitutive equations are obtained. The constitutive equations are integrated by applying the backward Euler rule and by using Newton iteration. The proposed model is assessed analytically and numerically and a typical calibration procedure for concrete is proposed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
118.
119.
We report a new Holocene relative sea‐level curve based on the stratigraphy in five closely located isolation basins near Lista in southernmost Norway. The results detail the progress and timing of the mid‐Holocene Tapes transgression, the peak of which in this region represents the highest postglacial sea level, as well as the rate of land emergence since then. One additional cored basin is situated above the marine limit. All the basins have bedrock sills that were levelled using a differential GPS. Isolation and ingression boundaries were identified by macrofossil analysis and radiocarbon dated on terrestrial plant remains. In most cases several dates were obtained from each transition. Relative sea level rose with a mean rate of 7 mm a?1 during the last part of the Tapes transgression 8600?8200 cal. a BP and then gradually slowed to a mean rate of 1 mm a?1 from 8200?7000 cal. a BP. Mean sea level reached ~5 m higher than the present level when the transgression culminated. Land emergence took place after this, first slowly at a mean rate of 0.4 mm a?1 until ~3900 cal. a BP before it increased to 2.6 mm between 3900 and 3400 cal. a BP. Since then it has slowly decreased until today and has been ~0.2 mm a?1 for the last 2000 years. Based on the new curve we present updated Tapes isobases for the region that are displaced by ~20 km in relation to the existing model. From one basin we also report a 5–10 cm thick layer of sorted, sandy gravel, embedded in a more than 5‐m‐thick deposit of homogeneous shallow‐marine mud. The gravel was deposited ~5500 cal. a BP, which is the same age as a tsunami deposit previously mapped in Shetland. As several typical characteristics of tsunami facies deposits are lacking, the origin of the gravel layer remains inconclusive.  相似文献   
120.
Arctic sea ice is a keystone indicator of greenhouse-gas induced global climate change, which is expected to be amplified in the Arctic. Here we directly compare observed variations in arctic sea-ice extent and CO2 since the beginning of the 20th century, identifying a strengthening linkage, such that in recent decades the rate of sea-ice decrease mirrors the increase in CO2, with r ~ –0.95 over the last four decades, thereby indicating that 90% (r2 ~ 0.90) of the decreasing sea-ice extent is empirically “accounted for” by the increasing CO2 in the atmosphere. The author presents an empirical relation between annual sea-ice extent and global atmospheric CO2 concentrations, in which sea-ice reductions are linearly, inversely proportional to the magnitude of increase of CO2 over the last few decades. This approximates sea-ice changes during the most recent four decades, with a proportionality constant of 0.030 million km2 per ppmv CO2. When applied to future emission scenarios of the Intergovernmental Panel on Climate Change (IPCC), this relationship results in substantially faster ice decreases up to 2050 than predicted by IPCC models. However, departures from this projection may arise from non-linear feedback effects and/or temporary natural variations on interannual timescales, such as the record minimum of sea-ice extent observed in September 2007.Citation: Johannessen, O. M., 2008: Decreasing arctic sea ice mirrors increasing CO2 on decadal time scale, Atmos. Oceanic Sci. Lett., 1, 51-56  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号