全文获取类型
收费全文 | 709篇 |
免费 | 22篇 |
国内免费 | 2篇 |
专业分类
测绘学 | 4篇 |
大气科学 | 75篇 |
地球物理 | 163篇 |
地质学 | 220篇 |
海洋学 | 66篇 |
天文学 | 87篇 |
综合类 | 4篇 |
自然地理 | 114篇 |
出版年
2022年 | 9篇 |
2021年 | 8篇 |
2020年 | 13篇 |
2019年 | 17篇 |
2018年 | 11篇 |
2017年 | 12篇 |
2016年 | 22篇 |
2015年 | 23篇 |
2014年 | 21篇 |
2013年 | 41篇 |
2012年 | 31篇 |
2011年 | 30篇 |
2010年 | 26篇 |
2009年 | 38篇 |
2008年 | 24篇 |
2007年 | 33篇 |
2006年 | 26篇 |
2005年 | 31篇 |
2004年 | 20篇 |
2003年 | 26篇 |
2002年 | 26篇 |
2001年 | 26篇 |
2000年 | 18篇 |
1999年 | 16篇 |
1998年 | 20篇 |
1997年 | 7篇 |
1996年 | 8篇 |
1995年 | 7篇 |
1994年 | 8篇 |
1993年 | 4篇 |
1992年 | 12篇 |
1991年 | 7篇 |
1990年 | 5篇 |
1989年 | 7篇 |
1988年 | 3篇 |
1987年 | 9篇 |
1986年 | 9篇 |
1985年 | 4篇 |
1984年 | 11篇 |
1983年 | 8篇 |
1982年 | 9篇 |
1981年 | 8篇 |
1980年 | 6篇 |
1979年 | 10篇 |
1978年 | 2篇 |
1977年 | 3篇 |
1976年 | 4篇 |
1973年 | 8篇 |
1970年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有733条查询结果,搜索用时 15 毫秒
71.
Neil Trentham 《Monthly notices of the Royal Astronomical Society》1998,293(1):71-88
We present the luminosity function and measurements of the scalelengths, colours and radial distribution of dwarf galaxies in the Coma cluster down to R =24. Our survey area is 674 arcmin2 ; this is the deepest and most detailed survey covering such a large area.
Our measurements agree with those of most previous authors at bright and intermediate magnitudes. The new results are as follows.
(1) Galaxies in the Coma cluster have a luminosity function φ( L )∝ Lα that is steep (α∼−1.7) for −15< MR <−11, and is shallower brighter than this. The curvature in the luminosity function at MR ∼−15 is statistically significant.
(2) The galaxies that contribute most strongly to the luminosity function at −14< MR <−12 have colours and scalelengths that are consistent with those of local dwarf spheroidal galaxies placed at the distance of Coma.
(3) These galaxies with −14< MR <−12 have a colour distribution that is very strongly peaked at B − R =1.3. This is suggestive of a substantial degree of homogeneity in their star formation histories and metallicities.
(4) These galaxies with −14< MR <−12 also appear to be more confined to the cluster core ( r ∼200 kpc) than the brighter galaxies. Alternatively, this observation may be explained in part or whole by the presence of an anomalously high number of background galaxies behind the cluster core. Velocity measurements of these galaxies would distinguish between these two possibilities. 相似文献
Our measurements agree with those of most previous authors at bright and intermediate magnitudes. The new results are as follows.
(1) Galaxies in the Coma cluster have a luminosity function φ( L )∝ L
(2) The galaxies that contribute most strongly to the luminosity function at −14< M
(3) These galaxies with −14< M
(4) These galaxies with −14< M
72.
Maarten Wynants Aloyce Patrick Linus Munishi Kelvin Mtei Samuel Bodé Alex Taylor Geoffrey Millward Neil Roberts David Gilvear Patrick Ndakidemi Pascal Boeckx William H. Blake 《地球表面变化过程与地形》2021,46(15):3112-3126
Soil resources in parts of Tanzania are rapidly being depleted by increased rates of soil erosion and downstream sediment transport, threatening ecosystem health, water and livelihood security in the region. However, incomplete understanding to what effect the dynamics of soil erosion and sediment transport are responding to land-use changes and climatic variability are hindering the actions needed to future-proof Tanzanian land-use practices. Complementary environmental diagnostic tools were applied to reconstruct the rates and sources of sedimentation over time in three Tanzanian river systems that have experienced changing land use and climatic conditions. Detailed historical analysis of sediment deposits revealed drastic changes in sediment yield and source contributions. Quantitative sedimentation reconstruction using radionuclide dating showed a 20-fold increase in sediment yield over the past 120 years. The observed dramatic increase in sediment yield is most likely driven by increasing land-use pressures. Deforestation, cropland expansion and increasing grazing pressures resulted into accelerating rates of sheet erosion. A regime shift after years of progressive soil degradation and convergence of surface flows resulted into a highly incised landscape, where high amounts of eroded soil from throughout the catchment are rapidly transported downstream by strongly connected ephemeral drainage networks. By integrating complementary spatial and temporal evidence bases, this study demonstrated links between land-use change, increased soil erosion and downstream sedimentation. Such evidence can guide stakeholders and policy makers in the design of targeted management interventions to safeguard future soil health and water quality. 相似文献
73.
74.
Trends in flood seasonality of the River Ouse (Northern England) from archive and instrumental sources since AD 1600 总被引:1,自引:0,他引:1
Neil Macdonald 《Climatic change》2012,112(3-4):901-923
The last decade has witnessed an increase in the application of historical records (historical and documentary) in developing a more complete understanding of high-magnitude flood frequency; but little consideration has been given to the additional information that documentary accounts contain, particularly relating to flood seasonality. This paper examines the methods and approaches available in long-term flood seasonality analysis and applies them to the River Ouse (Yorkshire) in Northern England since AD 1600. A detailed historical flood record is available for the City of York consisting of annual maxima flood levels since AD 1877, with documentary accounts prior to this. A detailed analysis of long-term flood seasonality requires confidence in the accuracy and completeness of flood records; as a result the augmented flood series are analysed using three strategies: firstly, considering all recorded floods since AD 1600; secondly, through detailed analysis of the more complete record since AD 1800; and finally, applying a threshold to focus on high-magnitude flood events since AD 1800. The results identify later winter flooding, particularly in the second half of the twentieth century, with a notable reduction in summer flood events at York during the twentieth century compared to previous centuries. Flood generating mechanisms vary little between the periods considered, with a general pattern of stability in the ratio of floods incorporating a snowmelt component. 相似文献
75.
Helen C. Bostock Bruce W. HaywardHelen L. Neil Kim I. CurrieGavin B. Dunbar 《Deep Sea Research Part I: Oceanographic Research Papers》2011,58(1):72-85
We have compiled carbonate chemistry and sedimentary CaCO3% data for the deep-waters (>1500 m water depth) of the southwest (SW) Pacific region. The complex topography in the SW Pacific influences the deep-water circulation and affects the carbonate ion concentration ([CO32−]), and the associated calcite saturation horizon (CSH, where ??calcite=1). The Tasman Basin and the southeast (SE) New Zealand region have the deepest CSH at ∼3100 m, primarily influenced by middle and lower Circumpolar Deep Waters (m or lCPDW), while to the northeast of New Zealand the CSH is ∼2800 m, due to the corrosive influence of the old North Pacific deep waters (NPDW) on the upper CPDW (uCPDW). The carbonate compensation depth (CCD; defined by a sedimentary CaCO3 content of <20%), also varies between the basins in the SW Pacific. The CCD is ∼4600 m to the SE New Zealand, but only ∼4000 m to the NE New Zealand. The CaCO3 content of the sediment, however, can be influenced by a number of different factors other than dissolution; therefore, we suggest using the water chemistry to estimate the CCD. The depth difference between the CSH and CCD (??ZCSH−CCD), however, varies considerably in this region and globally. The global ??ZCSH−CCD appears to expand with increase in age of the deep-water, resulting from a shoaling of the CSH. In contrast the depth of the chemical lysocline (??calcite=0.8) is less variable globally and is relatively similar, or close, to the CCD determined from the sedimentary CaCO3%. Geochemical definitions of the CCD, however, cannot be used to determine changes in the paleo-CCD. For the given range of factors that influence the sedimentary CaCO3%, an independent dissolution proxy, such as the foraminifera fragmentation % (>40%=foraminiferal lysocline) is required to define a depth where significant CaCO3 dissolution has occurred back through time. The current foraminiferal lysocline for the SW Pacific region ranges from 3100-3500 m, which is predictably just slightly deeper than the CSH. This compilation of sediment and water chemistry data provides a CaCO3 dataset for the present SW Pacific for comparison with glacial/interglacial CaCO3 variations in deep-water sediment cores, and to monitor future changes in [CO32−] and dissolution of sedimentary CaCO3 resulting from increasing anthropogenic CO2. 相似文献
76.
Anna E. van Yperen John M. Holbrook Miquel Poyatos‐Mor Cody Myers Ivar Midtkandal 《Basin Research》2021,33(1):513-543
The adequate documentation and interpretation of regional‐scale stratigraphic surfaces is paramount to establish correlations between continental and shallow marine strata. However, this is often challenged by the amalgamated nature of low‐accommodation settings and control of backwater hydraulics on fluvio‐deltaic stratigraphy. Exhumed examples of full‐transect depositional profiles across river‐to‐delta systems are key to improve our understanding about interacting controlling factors and resultant stratigraphy. This study utilizes the ~400 km transect of the Cenomanian Mesa Rica Sandstone (Dakota Group, USA), which allows mapping of down‐dip changes in facies, thickness distribution, fluvial architecture and spatial extent of stratigraphic surfaces. The two sandstone units of the Mesa Rica Sandstone represent contemporaneous fluvio‐deltaic deposition in the Tucumcari sub‐basin (Western Interior Basin) during two regressive phases. Multivalley deposits pass down‐dip into single‐story channel sandstones and eventually into contemporaneous distributary channels and delta‐front strata. Down‐dip changes reflect accommodation decrease towards the paleoshoreline at the Tucumcari basin rim, and subsequent expansion into the basin. Additionally, multi‐storey channel deposits bound by erosional composite scours incise into underlying deltaic deposits. These represent incised‐valley fill deposits, based on their regional occurrence, estimated channel tops below the surrounding topographic surface and coeval downstepping delta‐front geometries. This opposes criteria offered to differentiate incised valleys from flood‐induced backwater scours. As the incised valleys evidence relative sea‐level fall and flood‐induced backwater scours do not, the interpretation of incised valleys impacts sequence stratigraphic interpretations. The erosional composite surface below fluvial strata in the continental realm represents a sequence boundary/regional composite scour (RCS). The RCS’ diachronous nature demonstrates that its down‐dip equivalent disperses into several surfaces in the marine part of the depositional system, which challenges the idea of a single, correlatable surface. Formation of a regional composite scour in the fluvial realm throughout a relative sea‐level cycle highlights that erosion and deposition occur virtually contemporaneously at any point along the depositional profile. This contradicts stratigraphic models that interpret low‐accommodation settings to dominantly promote bypass, especially during forced regressions. Source‐to‐sink analyses should account for this in order to adequately resolve timing and volume of sediment storage in the system throughout a complete relative sea‐level cycle. 相似文献
77.
Iain M. Suthers Jock W. YoungMark E. Baird Moninya RoughanJason D. Everett Gary B. BrassingtonMaria Byrne Scott A. CondieJason R. Hartog Christel S. HasslerAlistair J. Hobday Neil J. HolbrookHamish A. Malcolm Peter R. OkePeter A. Thompson Ken Ridgway 《Deep Sea Research Part II: Topical Studies in Oceanography》2011,58(5):538-546
The poleward flowing East Australian Current (EAC) is characterised by its separation from the coast, 100-200 nautical miles north of Sydney, to form the eastward flowing Tasman Front and a southward flowing eddy field. The separation zone greatly influences coastal ecosystems for the relatively narrow continental shelf (only 15-50 km wide), particularly between 32-34°S. In this region the continental shelf has a marked shift in the seasonal temperature-salinity relationship and elevated surface nitrate concentrations. This current parallels the portion of the coast where Australia’s population is concentrated and has a long history of scientific research. However, understanding of physical and biological processes driven by the EAC, particularly in linking circulation to ecosystems, is limited. In this special issue of 16 papers on the EAC, we examine the effects of climatic wind-stress forced ocean dynamics on EAC transport variability and coastal sea level, from ENSO to multi-decadal time scales; eddy formation and structure; fine scale connectivity and larval retention. Comparisons with the poleward-flowing Leeuwin Current on Australia’s west coast show differences in ecosystem productivity that can be attributed to the underlying physics in each region. On average there is double the chlorophyll a concentration on the east coast than the west. In comparison to the Leeuwin, the EAC may have less local retention of larvae and act as a partial barrier to onshore transport, which may also be related to the local spawning and early life history of small pelagic fish on each coast. Inter-annual variations in the EAC transport produce a detectable sea-level signal in Sydney Harbour, which could provide a useful fisheries index as does the Fremantle sea level and Leeuwin Current relationship. The EAC’s eddy structure and formation by the EAC are examined. A particular cold-core eddy is shown to have a “tilt” towards the coast, and that during a rotation the flow of particles may rise up to the euphotic zone and then down beneath. In a warm-core eddy, surface flooding is shown to produce a new shallower surface mixed layer and promote algal growth. An assessment of plankton data from 1938-1942 showed that the local, synoptic conditions had to be incorporated before any comparison with the present. There are useful relationships of water mass characteristics in the Tasman Sea and separation zone with larval fish diversity and abundance, as well as with long-line fisheries. These fisheries-pelagic habitat relationships are invaluable for fisheries management, as well as for climate change assessments.There is further need to examine the EAC influence on rainfall, storm activity, dust deposition, and on the movements by fish, sharks and whales. The Australian Integrated Marine Observing System (IMOS) has provided new infrastructure to determine the changing behaviour of the EAC and its bio-physical interaction with the coasts and estuaries. The forecasting and hindcasting capability developed under the Bluelink project has provided a new tool for data synthesis and dynamical analysis. The impact of a strengthening EAC and how it influences the livelihoods of over half the Australian population, from Brisbane to Sydney, Hobart and Melbourne, is just being realised. 相似文献
78.
Deformation of a young salt giant: regional topography of the Red Sea Miocene evaporites 总被引:1,自引:0,他引:1 下载免费PDF全文
The deformational behaviour of ‘salt giants’ during and shortly after their deposition is difficult to decipher in ocean margin settings where the original evaporites have been deeply buried and strongly mobilized. Here, we examine seismic reflection data from the Red Sea, where evaporites deposited until the end of the Miocene (~5.3 Ma), are generally covered by only 200–300 m of low‐density sediments and where the presence of an axial spreading centre allows us to observe how they have responded to a varied configuration of underlying basement. The regional morphology of the S‐reflection, representing the evaporite surface, is mapped out from seismic data from 13 cruises. The S‐reflection is locally rugged and commonly angular. It is either underlain by layered reflectivity, suggestive of layered evaporite beds, or by more transparent seismic character, suggestive of massive halite. On average, the depth of the reflection on the flanks of the axial rift systematically declines from 700 to 1100 m below sea level (mbsl) going northwards from 16 to 23°N. In the central Red Sea, the S‐reflection has 100‐ to 200‐m‐deep depressions, extending towards the coasts in places. In the southern Red Sea, the S‐reflection forms a surface at 300–800 mbsl that appears less disrupted. We suggest that the evaporites originally had a flat, horizontal surface at the end of the Miocene and have subsequently been distorted by isostatic effects and axial rifting, which in turn promoted evaporite flowage. Off‐axis evaporite depressions correspond with flows identified with multibeam sonar. Furthermore, across‐rift lows in Bouguer gravity anomalies represent valleys in the underlying basement. The off‐axis evaporite depressions overlie those valleys, as would be expected if halokinetic movements were greatest where the evaporites are locally thick, leading to deflation of the evaporite surface. The thickness of post‐Miocene sediment, also mapped out as part of this procedure, confirms the generally pelagic nature of this interval and increases on average from ~250 to 300 m from the central to the southern Red Sea, mimicking the variation in pelagic productivity observed in the present water column. 相似文献
79.
80.
Neil S. Shifrin 《Estuaries and Coasts》1980,3(3):230-233
The effects of applied filtration vacuum and incubation time on the release of dissolved organic carbon (DOC) by natural phytoplankton populations dominated by diatoms were examined. The rate of primary production and release of DOC remained reasonably constant during a 5 hour incubation period. The measured release of DOC was found to be quite sensitive to the applied filtration vacuum, ranging from near 2 percent of fixed carbon (neglecting respiration) for gravity-filtered samples to 36 percent for samples filtered at 40 cm Hg vacuum. 相似文献