首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   9篇
  国内免费   7篇
测绘学   17篇
大气科学   16篇
地球物理   53篇
地质学   95篇
海洋学   17篇
天文学   3篇
综合类   1篇
自然地理   10篇
  2024年   1篇
  2022年   7篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   16篇
  2017年   19篇
  2016年   20篇
  2015年   10篇
  2014年   18篇
  2013年   29篇
  2012年   12篇
  2011年   9篇
  2010年   11篇
  2009年   11篇
  2008年   8篇
  2007年   8篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1996年   1篇
  1992年   1篇
  1982年   1篇
排序方式: 共有212条查询结果,搜索用时 46 毫秒
141.
142.
The sea level change along the Peninsular Malaysia and Sabah–Sarawak coastlines for the 21st century is investigated along the coastal areas of Peninsular Malaysia and Sabah–Sarawak because of the expected climate change during the 21st century. The spatial variation of the sea level change is estimated by assimilating the global mean sea level projections from the Atmosphere–Ocean coupled Global Climate Model/General Circulation Model (AOGCM) simulations to the satellite altimeter observations along the subject coastlines. Using the assimilated AOGCM projections, the sea level around the Peninsular Malaysia coastline is projected to rise with a mean in the range of 0.066 to 0.141 m in 2040 and 0.253 m to 0.517 m in 2100. Using the assimilated AOGCM projections, the sea level around Sabah–Sarawak coastlines is projected to rise with a mean in the range of 0.115 m to 0.291 m in 2040 and 0.432 m to 1.064 m in 2100. The highest sea level rise occurs at the northeast and northwest regions in Peninsular Malaysia and at north and east sectors of Sabah in Sabah–Sarawak coastline. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
143.
Simulation of horizontal well performance using Visual MODFLOW   总被引:2,自引:2,他引:0  
A proposed horizontal well or radial collector well installation in shallow aquifers to enhance water withdrawal rates in Pintu Geng well field in Kelantan, Malaysia was simulated using the Drainage Package of MODFLOW groundwater model. The modelling exercise aimed at identifying an optimum pumping rate that would safely achieve the desired drawdown of less than 2 m in an area of 300 m radius surrounding the Pintu Geng horizontal collector well. The model also would serve as a basis for the design of the horizontal well components. High degree of grid refinement for the well location is needed to simulate the real field installation. However, for the purpose of designing water withdrawal systems, it is important to obtain the correct production rate of these wells for a given drawdown. A transient groundwater flow model was calibrated and validated with few assumptions of the horizontal well hydraulic properties. The model demonstrates that under natural flow condition at ?3 m depth, the six collectors (drains) tap a volume of 19,200–43,700 m3/day. A steady-state model was also developed to predict the capture zone delineation. Attention is also given to the impact of the well installation to the surrounding 300 m radius by inspecting the degree of the drawdown.  相似文献   
144.
To have sustainable management and proper decision-making, timely acquisition and analysis of surface features are necessary. Traditional pixel-based analysis is the popular way to extract different categories, but it is not comparable by the achievements that can be achieved through the object-based method that uses the additional characteristics of features in the process of classification. In this paper, three types of classification were used to classify SPOT 5 satellite image in mapping land cover; Support vector machine (SVM) pixel-based, SVM object-based and Decision Tree (DT) pixel-based classification. Normalised Difference Vegetation Index and the brightness value of two infrared bands (NIR and SWIR) were used in manually developed DT classification. The classification of the SVM (pixel based) was generated using the selected groups of pixels that represent the selected features. In addition, the SVM (object based) was implemented by using radial-based function kernel. The classified features were oil palm, rubber, urban area, soil, water and other vegetation. The study found that the overall classification of the DT was the lowest at 69.87% while those of SVM (pixel based) and SVM (object based) were 76.67 and 81.25%, respectively.  相似文献   
145.
In this paper, we investigate the characteristics of three-component ground motions recorded during the $M_\text{w}\,5.2$ Val-des-Bois (Québec) earthquake, which occurred on the 23 June 2010. The earthquake is the largest recorded event in eastern Canada within the last decade. The records analyzed were provided by a strong motion monitoring network, comprising accelerometers located at sites with different soil conditions. The two orthogonal horizontal components and one vertical component at each recording station are uncorrelated to determine their principal directions, and the results obtained are used to characterize intensity ratios between the three uncorrelated components. A new hodograph representation is proposed to highlight the correlation between accelerations and displacement trajectories along various time increments at each recording station. The principal components are discussed in light of seismographic data, local site conditions, and trajectories. Time–frequency analyses of the uncorrelated records are also conducted to compare the distribution of spectral amplitudes and frequency content along the three principal components during the shaking. The results of this work shed more light on the characteristics of three-component ground motions from an important Eastern North America earthquake, and could be used to calibrate simulated multicomponent ground motions in this region.  相似文献   
146.
Wave climate simulation for southern region of the South China Sea   总被引:2,自引:0,他引:2  
This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.  相似文献   
147.
Ten Indian mustard (Brassica juncea L.) genotypes were screened for their phytoremediation potential for arsenic (As) contaminated water under laboratory‐controlled conditions. The genotypes were grown in a hydroponic chamber for 20 days in 250‐mL beakers containing As‐contaminated water. During plant development, changes in plant growth, biomass, and total As were evaluated. Of the 10 genotypes (Pusa Agrani, BTO, Pusa Kranti, Pusa Bahar, Pusa Bold, Pusa Basant, Pusa Jai Kisan, Arka Vardhan, Varuna, and Vaibhav) Pusa Jai Kisan was the most effective in phytoremediating As‐contaminated water under hydroponic conditions. This will provide new information for Indian mustard genotypes for phytoremediating As‐contaminated soils.  相似文献   
148.
Modeling rainwater infiltration in slopes is vital to the analysis of slope failure induced by heavy rainfall. Although the significance of rainwater infiltration in causing landslides is widely recognized, there have been different conclusions as to the relative roles of antecedent rainfall to slope failure. In this study, a numerical model was developed to estimate the effect of antecedent rainfall on an unsaturated slope, the formation of a saturated zone, and the change in slope stability under weak rainfall and rainstorm event. Results showed that under a rainstorm event, slope failure occurred at comparably similar time although the antecedent rainfall drainage periods prior to the major rainfall were different (i.e., 24-h, 48-h and 96-h). However, under weak rainfall condition, differences of the antecedent rainfall drainage periods have significant effect on development of pore-water pressure. A higher initial soil moisture conditions caused faster increase in pore water pressure and thus decreasing the safety factor of the slope eventually increasing likelihood of slope failure.  相似文献   
149.
Mafic volcanic rocks that occur within the sedimentary pile of the Hindoli Group were analyzed for major and trace elements (including REE) to establish tectonic setting of volcanism during the early Proterozoic history of the North Indian Craton. The mafic volcanics are sub-alkaline showing compositional variation from picrobasalt to basalt. They are LREE enriched with (La/Yb)N ratio ranging from 4.67?C6.19 (avg.5.27) and exhibit slightly concave REE patterns relative to chondrite. The multi-element patterns of these mafic volcanic rocks display relative enrichment in Th and LREE and negative anomalies of Nb and P. These geochemical characteristics are consistent with a subduction related origin. Various variation diagrams, involving immobile trace elements, distinguish the Hindoli lavas as arc basalt. However, their Ti and Nb contents are higher than those of subduction related magmas. Probably the wedge melting, along with mixing of rising asthenosphere might have produced these characteristics. It is suggested that the Hindoli basin originated by rifting of island- arc lithosphere, caused by rising plume in an extensional back arc region. Based on the results of the present geochemical study, it is proposed that in the early Proterozoic the Mewar block had an active-type continental margin on its present eastern side. The continental magmatic arcs and intra-arc basins developed on this margin were subsequently incorporated into the Mewar protocontinent. Possibly, the plate carrying the Bundelkhand block subducted beneath the eastern margin of the Mewar block, resulting in the final amalgamation of the two blocks along Great Boundary Fault zone or Banas Dislocation Zone. The arc related volcanism of north Indian shield at about 1850?C1832 Ma, appears to represent the global subduction event, which resulted in the amalgamation and formation of Columbia supercontinent.  相似文献   
150.
During the last four decades, several numerical formulations and specialized software have been developed in response to studies about dam break (DB) wave propagation and its hydraulic and environmental impacts on downstream hydraulic structures and valleys. These methods cannot, however, be used to predict wave propagation within partially covered channels or reservoirs located upstream of hydraulic structures. In fact, such problems require the modelling of the complex transition from a free surface flow into a pressurized one. Because rivers or channels partially covered with ice sheets are typical examples commonly met in winter in northern climates, it is vitally important to assess ice-cover effects on the DB wave propagation and develop appropriate tools to predict resulting hydrodynamic loads on hydraulic structures downstream. This paper proposes an original numerical formulation to model wave propagation and hydrodynamic pressure in partially covered channels. The proposed formulation uses one-dimensional St. Venant equations to simulate open-water flow and water hammer equations to simulate pressure flow within the partially covered channel. To illustrate the use of the hydrodynamic pressures obtained, a case study is presented where a channel cover and a dam located downstream are modelled using finite elements to investigate their dynamic structural response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号