首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66573篇
  免费   1041篇
  国内免费   595篇
测绘学   1572篇
大气科学   4325篇
地球物理   12953篇
地质学   23973篇
海洋学   6103篇
天文学   15934篇
综合类   150篇
自然地理   3199篇
  2022年   458篇
  2021年   735篇
  2020年   847篇
  2019年   871篇
  2018年   1875篇
  2017年   1743篇
  2016年   2054篇
  2015年   1077篇
  2014年   1947篇
  2013年   3507篇
  2012年   2128篇
  2011年   2815篇
  2010年   2506篇
  2009年   3311篇
  2008年   2784篇
  2007年   2840篇
  2006年   2649篇
  2005年   1836篇
  2004年   1808篇
  2003年   1700篇
  2002年   1661篇
  2001年   1505篇
  2000年   1416篇
  1999年   1190篇
  1998年   1227篇
  1997年   1172篇
  1996年   1016篇
  1995年   987篇
  1994年   937篇
  1993年   782篇
  1992年   747篇
  1991年   747篇
  1990年   845篇
  1989年   675篇
  1988年   654篇
  1987年   812篇
  1986年   666篇
  1985年   883篇
  1984年   916篇
  1983年   874篇
  1982年   814篇
  1981年   766篇
  1980年   702篇
  1979年   641篇
  1978年   655篇
  1977年   564篇
  1976年   565篇
  1975年   565篇
  1974年   536篇
  1973年   564篇
排序方式: 共有10000条查询结果,搜索用时 500 毫秒
921.
922.
923.
924.
The sandy quartzose parts of the Utsira Formation, the Middle Miocene to mid Pliocene Utsira Sand, extends north–south along the Viking Graben near the UK/Norwegian median line for more than 450 km and 75–130 km east–west. The Utsira Sand is located in basin-restricted seismic depocentres, east of and below prograding sandy units from the Shetland Platform area with Hutton Sands. The Utsira Sand reaches thicknesses up to ca. 300 m in the southern depocentre and 200 m in the two northern depocentres with sedimentation rates up to 2–4 cm/ka. Succeeding Plio–Pleistocene is divided into seismic units, including Base Upper Pliocene, Shale Drape, Prograding Complex and Pleistocene. The units mainly consist of clay, but locally minor sands occur, especially at toes of prograding clinoforms (bottom-set sands) and in the Pleistocene parts, and the total thickness covering the Utsira Sand is in most places more than 800 m, but thins towards the margins.  相似文献   
925.
Second-order moment advection scheme applied to Arctic Ocean simulation   总被引:2,自引:0,他引:2  
We apply the second-order moment (SOM) advection scheme of (Prather, M.J. 1986. Numerical advection by conservation of second-order moments. J. Geophys. Res. 91, 6671–6681.) to the simulation of the large-scale circulation of the Arctic Ocean with a coupled ocean–sea-ice model. Compared to three other advection schemes commonly employed in ocean simulations (centred differences, flux corrected transport, and multidimensional positive definite advection transport), the SOM method helps preserve the vertical structure of Arctic water masses. The depth, thickness and hydrographic properties of the Arctic Surface Water and the Arctic Atlantic Layer are better represented with SOM than with any of the other three advection algorithms. We also present a convenient method for calculating the implicit numerical diffusivity of upstream based schemes, such as the SOM method, and discuss three approaches for improving the monotonicity properties of the SOM algorithm.  相似文献   
926.
A set of digital maps including geology, Quaternary sediments, landscapes, engineering-geological, vegetation, geocryological and the series of regional sources have been selected to characterize the Russian Arctic coast. Based on this data, new maps of engineering geocryological zoning and zoning of the coast with respect to the intensity of exogenous geological processes and risk of technogenic impacts have been generated at the scales of 1:4,000,000–1:8,000,000. These maps are a tool to assess the impact of industry on the Arctic coast of the country.  相似文献   
927.
928.
929.
Chromophoric dissolved organic matter (CDOM) was measured in the spring and summer in the northern Gulf of Mexico with the ECOShuttle, a towed, instrumented, undulating vehicle. A submersible pump mounted on the vehicle supplied continuously flowing, uncontaminated seawater to online instruments in the shipboard laboratory and allowed discrete samples to be taken for further analysis. CDOM in the northern Gulf of Mexico was dominated by freshwater inputs from the Mississippi River through the Birdfoot region and to the west by discharge from the Atchafalaya River. CDOM was more extensively dispersed in the high-flow period in the spring but in both time periods was limited by stratification to the upper 12 m or so. Thin, subsurface CDOM maxima were observed below the plume during the highly stratified summer period but were absent in the spring. However, there was evidence of significant in situ biological production of CDOM in both seasons.The Mississippi River freshwater end member was similar in spring and summer, while the Atchafalaya end member was significantly higher in the spring. In both time periods, the Atchafalaya was significantly higher in CDOM and dissolved organic carbon (DOC) than the Mississippi presumably due to local production and exchange within the coastal wetlands along the lower Atchafalaya which are absent along the lower Mississippi. Nearshore waters may also have higher CDOM due to outwelling from coastal wetlands. High-resolution measurements allow the differentiation of various water masses and are indicative of rapidly varying (days to weeks) source waters. Highly dynamic but conservative mixing between various freshwater and marine end members apparently dominates CDOM distributions in the area with significant in situ biological inputs (bacterial degradation of phytoplankton detritus), evidence of flocculation, and minor photobleaching effects also observed. It is clear that high-resolution measurements and adaptive sampling strategies allow a more detailed examination of the processes that control CDOM distributions in river-dominated systems.  相似文献   
930.
The extremely cold winter of 2004/2005 was accompanied by an intensive formation of polar stratospheric clouds and a significant chemical destruction of ozone. The results of calculating chemical losses of ozone in the polar cyclone from the SAGE-III satellite data are given. Over the period January 1–March 25, 2005, at the isentropic levels 450–500 K, about 60% of ozone was destroyed. During that winter, the zone of formation of polar stratospheric clouds went down to levels with very low values of potential temperature (down to 350 K), thus resulting in a noticeable destruction of ozone at low altitudes. By March 25, 2005, the chemical losses of total ozone attained 116 ± 10 DU (128 ± 10 DU at the cyclone boundary), which is a recordbreaking value of the Arctic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号