This paper presents an experimental investigation on the manoeuvring characteristics of a pusher-barge system for deep (H/d>3) and shallow water (H/d=1.3) condition. Since, the operation of pusher-barge mainly concentrates on confined waters, there is a need to predict and analyze the manoeuvring characteristic of the system for a safe and acceptable performance. A time domain simulation programme was developed for this purpose. A series of model experiments were carried out to determine the hydrodynamic coefficients using a planar motion mechanism (PMM). The time domain simulation shows the manoeuvring characteristic in the form of turning circle trajectories and zig-zag manoeuvre based on the hydrodynamic coefficients, which were derived based on experimental results. The manoeuvring characteristics in shallow and deep water conditions were compared through the simulation results. A comparison of simulation results based on experimental and empirical driven coefficients for both conditions shows that the experimental coefficients gave better manoeuvring characteristics for both turning circle trajectories and zig-zag manoeuvre. 相似文献
Coral reef ecosystems worldwide are now being harmed by various stresses accompanying the degradation of fish habitats and thus knowledge of fish-habitat relationships is urgently required. Because conventional research methods were not practical for this purpose due to the lack of a geospatial perspective, we attempted to develop a research method integrating visual fish observation with a seabed habitat map and to expand knowledge to a two-dimensional scale. WorldView-2 satellite imagery of Spermonde Archipelago, Indonesia obtained in September 2012 was analyzed and classified into four typical substrates: live coral, dead coral, seagrass and sand. Overall classification accuracy of this map was 81.3% and considered precise enough for subsequent analyses. Three sub-areas (CC: continuous coral reef, BC: boundary of coral reef and FC: few live coral zone) around reef slopes were extracted from the map. Visual transect surveys for several fish species were conducted within each sub-area in June 2013. As a result, Mean density (Ind. / 300 m2) of Chaetodon octofasciatus, known as an obligate feeder of corals, was significantly higher at BC than at the others (p < 0.05), implying that this species’ density is strongly influenced by spatial configuration of its habitat, like the “edge effect.” This indicates that future conservation procedures for coral reef fishes should consider not only coral cover but also its spatial configuration. The present study also indicates that the introduction of a geospatial perspective derived from remote sensing has great potential to progress conventional ecological studies on coral reef fishes.
The Nagar Parkar Igneous Complex consists of Neoproterozoic igneous and metamorphic rocks dissected by mafic, felsic, and rhyolitic dykes. The latter can be classified broadly into porphyritic felsic dykes intruding gray and pink granites at Nagar Parkar and the surrounding areas, and the orthophyric felsic dykes intruding amphibolites, deformed pink granites, and the alkaline mafic dykes in the Dhedvero area, north of Nagar Parkar. The porphyritic felsic dykes are composed of perthites, quartz, and albitic plagioclase whereas the orthopheric felsic dykes contain K-feldspar (dominant), plagioclase, and minor quartz. Geochemically, the porphyritic and orthophyric felsic dykes are subalkaline and alkaline demonstrating post-orogenic A2- and OIB-A1-type characteristic on Nb–Y–Ce and Nb–Y–3Ga ternary plots, respectively. One orthophyric felsic dyke contains normative acmite and sodium metasilicate. This study suggests two distinct tectonic regimes for the origin of the felsic dykes of the area. The porphyritic felsic dykes show similarities with the ~800–700 Ma granites of the area, the rhyolite dykes of the Mount Abu, western Rajasthan in India, and the granites of the Seychelles microcontinent. The orthophyric felsic dykes show chemical resemblance with the Tavidar volcanic suite of western Rajasthan and the Silhouette and North islands of the Seychelles microcontinent. This study confirms spatial and temporal links among the Rodinian fragments exposed in the Nagar Parkar area of Pakistan, western Rajasthan of India, and the Seychelles microcontinent. 相似文献
The area of Thal Doab is located in the Indus Basin and is underlain by a thick alluvial aquifer called the Thal Doab aquifer (TDA). The TDA is undergone intense hydrological stress owing to rapid population growth and excessive groundwater use for livestock and irrigated agricultural land uses. The potential impact of these land uses on groundwater quality was assessed using a DRASTIC model in a Geographic Information System environment. Seven DRASTIC thematic maps were developed at fixed scale and then combined into a groundwater vulnerability map. The resultant vulnerability index values were grouped into four zones as low, moderate, high and very high. The study has established that 76% of the land area that is underlain by the TDA has a high to very high vulnerability to groundwater contamination mainly because of a thin soil profile, a shallow water table and the presence of soils and sediments with high hydraulic conductivity values. In addition, only 2 and 22% of the total area lie in low and moderate vulnerability zones, respectively. The outcomes of this study can be used to improve the sustainability of the groundwater resource through proper land-use management. 相似文献
Natural Resources Research - This study aims to evaluate the use of Tigris River sediments as abrasives for polishing marble surfaces to achieve a usable form as floor tiles, facing stones and... 相似文献
This paper presents the experimental and numerical studies conducted on a steel column and a steel frame structure using free vibration analysis. The effects of damages on structures were investigated, which were simulated by introducing multiple cracks at different locations in the experimental and numerical models. The acceleration responses of the test models, were recorded through an accelerometer, and were used to calibrate the numerical models developed in finite element based software. Modal frequencies of damaged and undamaged structures were compared and analyzed, to derive relationships for damaged and undamaged structures' frequencies in terms of crack depth. It was found that, due to the presence of cracks, the mechanical properties of a structure changes, whereby, the modal frequencies decrease. An approximately linear trend was observed for the frequency decrease with the increase in crack depth, which was also confirmed by the numerical models. The derived relationships were extended to further develop a mechanics-based damage scale for steel structures, to help facilitate structural health monitoring and screening of vulnerable structures. 相似文献
This paper presents an assessment of the Soil and Water Assessment Tool(SWAT) on a glaciated(Qugaqie) and a non-glaciated(Niyaqu) subbasin of the Nam Co Lake. The Nam Co Lake is located in the southern Tibetan Plateau, two subbasins having catchment areas of 59 km~2 and 388 km~2, respectively. The scores of examined evaluation indices(i.e., R~2, NSE, and PBIAS) established that the performance of the SWAT model was better on the monthly scale compared to the daily scale. The respective monthly values of R~2, NSE, and PBIAS were 0.94, 0.97, and 0.50 for the calibration period while 0.92, 0.88, and -8.80 for the validation period. Glacier melt contribution in the study domain was simulated by using the SWAT model in conjunction with the Degree Day Melt(DDM) approach. The conjunction of DDM with the SWAT Model ensued improved results during both calibration(R~2=0.96, NSE=0.95, and PBIAS=-13.49) and validation (R~2=0.97, NSE=0.96, and PBIAS=-2.87) periods on the monthly time scale. Average contribution(in percentage) of water balance components to the total streamflow of Niyaqu and Qugaqie subbasins was evaluated. We found that the major portion(99.45%) of the streamflow in the Niyaqu subbasin was generated by snowmelt or rainfall surface runoff(SURF_Q), followed by groundwater(GW_Q, 0.47%), and lateral(LAT_Q, 0.06%) flows. Conversely, in the Qugaqie subbasin, major contributor to the streamflow(79.63%) was glacier melt(GLC_Q), followed by SURF_Q(20.14%), GW_Q(0.13%), and LAT_Q(0.089%). The contribution of GLC_Q was the highest(86.79%) in July and lowest(69.95%) in September. This study concludes that the performance of the SWAT model in glaciated catchment is weak without considering glacier component in modeling; however, it performs reasonably well in non-glaciated catchment. Furthermore, the temperature index approach with elevation bands is viable in those catchments where streamflows are driven by snowmelt. Therefore, it is recommended to use the SWAT Model in conjunction with DDM or energy base model to simulate the glacier melt contribution to the total streamflow. This study might be helpful in quantification and better management of water resources in data scarce glaciated regions. 相似文献
Hindukush is an active subduction zone where at least one earthquake occurs on daily basis. For seismic hazard studies, it is important to develop a local magnitude scale using the data of local seismic network. We have computed local magnitude scale for Hindukush earthquakes using data from local network belonging to Center for Earthquake Studies (CES) for a period of three years, i.e. 2015–2017. A total of 26,365 seismic records pertaining to 2,683 earthquakes with magnitude 2.0 and greater, was used with hypocentral distance less than 600 km. Magnitude scale developed by using this data comes to be ML = logA + 0.929logr + 0.00298r – 1.84. The magnitude determined through formulated relation was compared with that of standard relation for Southern California and relation developed by the same authors for local network for Northern Punjab. It was observed that Hindukush region has high attenuation as compared to that of Southern California and Northern Punjab which implies that Hindukush is tectonically more disturbed as compared to the said regions, hence, seismically more active as well. We have calculated station correction factors for our network. Station correction factors do not show any pattern which probably owes to the geological and tectonic complexity of this structure. Standard deviation and variance of magnitude residuals for CES network determined using Hutton and Boore scale and scale developed in this study were compared, it showed that a variance reduction of 44.1% was achieved. Average of magnitude residuals for different distance ranges was almost zero which showed that our magnitude scale was stable for all distances up to 600 km. Newly developed magnitude scale will help in homogenization of earthquake catalog. It has been observed that b-value of CES catalog decreases when magnitude is calculated by using newly developed magnitude scale. 相似文献