首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   44篇
  国内免费   33篇
测绘学   8篇
大气科学   22篇
地球物理   112篇
地质学   265篇
海洋学   17篇
天文学   18篇
综合类   28篇
自然地理   22篇
  2023年   8篇
  2022年   19篇
  2021年   44篇
  2020年   32篇
  2019年   25篇
  2018年   78篇
  2017年   40篇
  2016年   60篇
  2015年   36篇
  2014年   29篇
  2013年   38篇
  2012年   13篇
  2011年   19篇
  2010年   6篇
  2009年   12篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1986年   1篇
  1978年   1篇
  1971年   1篇
排序方式: 共有492条查询结果,搜索用时 15 毫秒
181.
182.
183.
In many circumstances involving heat and mass transfer issues,it is considered impractical to measure the input flux and the resulting state distribution in the domain.Therefore,the need to develop techniques to provide solutions for such problems and estimate the inverse mass flux becomes imperative.Adaptive state estimator(ASE)is increasingly becoming a popular inverse estimation technique which resolves inverse problems by incorporating the semi-Markovian concept into a Bayesian estimation technique,thereby developing an inverse input and state estimator consisting of a bank of parallel adaptively weighted Kalman filters.The ASE is particularly designed for a system that encompasses independent unknowns and/or random switching of input and measurement biases.The present study describes the scheme to estimate the groundwater input contaminant flux and its transient distribution in a conjectural two-dimensional aquifer by means of ASE,which in particular is because of its unique ability to efficiently handle the process noise giving an estimation of keeping the relative error range within 10%in 2-dimensional problems.Numerical simulation results show that the proposed estimator presents decent estimation performance for both smoothly and abruptly varying input flux scenarios.Results also show that ASE enjoys a better estimation performance than its competitor,Recursive Least Square Estimator(RLSE)due to its larger error tolerance in greater process noise regimes.ASE's inherent deficiency of being slower than the RLSE,resulting from the complexity of algorithm,was also noticed.The chosen input scenarios are tested to calculate the effect of input area and both estimators show improved results with an increase in input flux area especially as sensors are moved closer to the assumed input location.  相似文献   
184.
The Upper Carboniferous—Lower Permian(Upper Pennsylvanian-Asselian) Tobra Formation is exposed in the Salt and Trans Indus ranges of Pakistan.The formation exhibits an alluvial plain(alluvial fan-piedmont alluvial plain) facies association in the Salt Range and Khisor Range.In addition,a stream flow facies association is restricted to the eastern Salt Range.The alluvial plain facies association is comprised of clast-supported massive conglomerate(Gmc),diamictite(Dm)facies,and massive sandstone(Sm) Hthofacies whereas the stream flow-dominated alluvial plain facies association includes fine-grained sandstone and siltstone(Fss),fining upwards pebbly sandstone(Sf),and massive mudstone(Fm) Hthofacies.The lack of glacial signatures(particularly glacial grooves and striatums) in the deposits in the Tobra Formation,which are,in contrast,present in their timeequivalent and palaeogeographically nearby strata of the Arabian peninsula,e.g.the AI Khlata Formation of Oman and Unayzah B member of the Saudi Arabia,suggests a pro-to periglacial,i.e.glaciofluvial depositional setting for the Tobra Formation.The sedimentology of the Tobra Formation attests that the Salt Range,Pakistan,occupied a palaeogeographic position just beyond the maximum glacial extent during Upper Pennsylvanian-Asselian time.  相似文献   
185.
Subsidence and thermal history analysis are carried out in order to investigate the Cenozoic basin development of the southwestern (Tenggol Arch and basinal side) part of the Malay basin. Structurally, the southwestern part consists of normal faults and horst and graben geometry. Tectonic subsidence curves show that the basinal side is more active than the Tenggol Arch due to movement along normal faults. Cenozoic development initiated with the deposition of sedimentary Units M & L (Oligocene) and the activation of the Tenggol fault on the basinal side. Several periods of accelerated and slow subsidence are observed during the Oligocene to Middle Miocene that could be associated with changes in regional stresses caused by pulsating plate movement. The Malay Basin experienced inversion throughout the Middle to Late Miocene related to mantle induced slab avalanche effect, causing relatively higher tectonic subsidence rates on the Tenggol Arch compared to the basinal side, suggesting that the Tenggol Arch is less affected by inversion than the basinal side. After a period (Late Miocene) of non-deposition, the basin was reactivated (Pliocene to recent) due to thermal relaxation with thick sedimentation. Paleo heat flows estimated utilizing a novel technique introduced in this study and present day heat flow calibrated using BHT data further supports our results, in that increase in heat flow is related to rapid tectonic subsidence. An anomalously high heat pulse affected the basin during inversion and could be the cause of meta-sediment formation whereas present heat flows, although high compared to average basins, shows decreasing trend from the inversion period.  相似文献   
186.
This review focuses on the various types of supports used for immobilization of titanium dioxide nanomaterial catalyst for degradation of organic pollutants in wastewater. Several supports suitable to particular immobilization technique used for the degradation of pollutants in wastewater streams are explained. In general, a coating of catalyst on supports is carried out either by physical (e.g., thermal treatment) or by chemical (e.g., sol–gel). Among a range of the supports used, some of the prominent ones include glass, silica, activated carbon, stainless steel, cellulose, clay. Also, characterization methods in use such as X-ray diffraction, transmission electron microscope, scanning electron microscope, and UV-spectroscopy are discussed. The operating parameters such as temperature for the selected immobilization techniques are also explained.  相似文献   
187.
This study aimed to develop a low-cost and effective clay liner material for solid waste landfills in Sri Lanka. A locally available clayey soil and its admixtures with 5 and 10% bentonite were examined for this purpose. Laboratory experiments to determine soil plasticity and swell index were carried out on the tested samples. Hydraulic conductivity (k) tests were carried out in the laboratory using water and an aqueous solution of CaCl2 on unconsolidated samples prepared by either dry or slurry packing and pre-consolidated samples with five different consolidation pressures (p) from 10 to 200 kPa. Measured liquid limits for tested admixtures increased with increasing bentonite contents and correlated well with measured values of the swell index. The difference in permeant solutions had little effect on measured k values for both unconsolidated and pre-consolidated samples. The hydraulic conductivities were highly affected by changing p, i.e., the k values decreased on two orders of magnitude as p increased from 10 to 200 kPa. The Kozeny–Carman equation, a theoretical permeability model that expresses the k-porosity relationship, was applied to measured data including reported values. Results showed the Kozeny–Carman equation captured well the porosity-dependent k values for tested soils and their admixtures with bentonite under a wide range of void ratios, suggesting that the Kozeny–Carman equation is a useful tool to estimate the magnitude of k values for differently compacted soil and its bentonite admixtures.  相似文献   
188.
The area of Thal Doab is located in the Indus Basin and is underlain by a thick alluvial aquifer called the Thal Doab aquifer (TDA). The TDA is undergone intense hydrological stress owing to rapid population growth and excessive groundwater use for livestock and irrigated agricultural land uses. The potential impact of these land uses on groundwater quality was assessed using a DRASTIC model in a Geographic Information System environment. Seven DRASTIC thematic maps were developed at fixed scale and then combined into a groundwater vulnerability map. The resultant vulnerability index values were grouped into four zones as low, moderate, high and very high. The study has established that 76% of the land area that is underlain by the TDA has a high to very high vulnerability to groundwater contamination mainly because of a thin soil profile, a shallow water table and the presence of soils and sediments with high hydraulic conductivity values. In addition, only 2 and 22% of the total area lie in low and moderate vulnerability zones, respectively. The outcomes of this study can be used to improve the sustainability of the groundwater resource through proper land-use management.  相似文献   
189.
The major limitation in planning water harvesting is the lack of knowledge in the estimation of surface area and storage volume at any depth of dam reservoir. The area–volume–elevation (AVE) curve of a reservoir plays a key role in estimating the most suitable depth, optimum surface area and highest capacity of reservoir storage. The existing methods to estimate the AVE curve are costly and time-consuming and require laborious work. This study attempts to develop a method to optimize the AVE curve for earth dams, using the digital elevation model generated by the Shuttle Radar Topography Mission (SRTM) data, and integrate it with the geographic information system (GIS), known as the GIS–SRTM. The proposed method was tested using field data in the Western Desert of Iraq, which is an arid environment. Three constructed small earth dams were selected for this study. The AVE curves were extracted for Horan 2 (H2), Al-gara 2 (G2) and Al-gara 4 (G4) earth dams. Comprehensive analyses have been carried out to evaluate the performance of the AVE curves using the proposed GIS–SRTM method and the field data. From the comparison, the proposed GIS–SRTM method was able to produce reliable AVE curves with a relative error less than 20%. Additionally, the proposed method was less time-consuming and the AVE curves can be visualized immediately. The proposed GIS–SRTM method is relatively supportive in analyzing spatial data to select the optimal site for rainwater harvesting and prevent excessive evaporation losses.  相似文献   
190.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号