首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   44篇
  国内免费   33篇
测绘学   8篇
大气科学   22篇
地球物理   112篇
地质学   262篇
海洋学   17篇
天文学   18篇
综合类   28篇
自然地理   22篇
  2023年   8篇
  2022年   19篇
  2021年   44篇
  2020年   32篇
  2019年   25篇
  2018年   78篇
  2017年   40篇
  2016年   60篇
  2015年   36篇
  2014年   28篇
  2013年   38篇
  2012年   13篇
  2011年   19篇
  2010年   6篇
  2009年   12篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1986年   1篇
排序方式: 共有489条查询结果,搜索用时 125 毫秒
181.
This review focuses on the various types of supports used for immobilization of titanium dioxide nanomaterial catalyst for degradation of organic pollutants in wastewater. Several supports suitable to particular immobilization technique used for the degradation of pollutants in wastewater streams are explained. In general, a coating of catalyst on supports is carried out either by physical (e.g., thermal treatment) or by chemical (e.g., sol–gel). Among a range of the supports used, some of the prominent ones include glass, silica, activated carbon, stainless steel, cellulose, clay. Also, characterization methods in use such as X-ray diffraction, transmission electron microscope, scanning electron microscope, and UV-spectroscopy are discussed. The operating parameters such as temperature for the selected immobilization techniques are also explained.  相似文献   
182.
This study aimed to develop a low-cost and effective clay liner material for solid waste landfills in Sri Lanka. A locally available clayey soil and its admixtures with 5 and 10% bentonite were examined for this purpose. Laboratory experiments to determine soil plasticity and swell index were carried out on the tested samples. Hydraulic conductivity (k) tests were carried out in the laboratory using water and an aqueous solution of CaCl2 on unconsolidated samples prepared by either dry or slurry packing and pre-consolidated samples with five different consolidation pressures (p) from 10 to 200 kPa. Measured liquid limits for tested admixtures increased with increasing bentonite contents and correlated well with measured values of the swell index. The difference in permeant solutions had little effect on measured k values for both unconsolidated and pre-consolidated samples. The hydraulic conductivities were highly affected by changing p, i.e., the k values decreased on two orders of magnitude as p increased from 10 to 200 kPa. The Kozeny–Carman equation, a theoretical permeability model that expresses the k-porosity relationship, was applied to measured data including reported values. Results showed the Kozeny–Carman equation captured well the porosity-dependent k values for tested soils and their admixtures with bentonite under a wide range of void ratios, suggesting that the Kozeny–Carman equation is a useful tool to estimate the magnitude of k values for differently compacted soil and its bentonite admixtures.  相似文献   
183.
The area of Thal Doab is located in the Indus Basin and is underlain by a thick alluvial aquifer called the Thal Doab aquifer (TDA). The TDA is undergone intense hydrological stress owing to rapid population growth and excessive groundwater use for livestock and irrigated agricultural land uses. The potential impact of these land uses on groundwater quality was assessed using a DRASTIC model in a Geographic Information System environment. Seven DRASTIC thematic maps were developed at fixed scale and then combined into a groundwater vulnerability map. The resultant vulnerability index values were grouped into four zones as low, moderate, high and very high. The study has established that 76% of the land area that is underlain by the TDA has a high to very high vulnerability to groundwater contamination mainly because of a thin soil profile, a shallow water table and the presence of soils and sediments with high hydraulic conductivity values. In addition, only 2 and 22% of the total area lie in low and moderate vulnerability zones, respectively. The outcomes of this study can be used to improve the sustainability of the groundwater resource through proper land-use management.  相似文献   
184.
The major limitation in planning water harvesting is the lack of knowledge in the estimation of surface area and storage volume at any depth of dam reservoir. The area–volume–elevation (AVE) curve of a reservoir plays a key role in estimating the most suitable depth, optimum surface area and highest capacity of reservoir storage. The existing methods to estimate the AVE curve are costly and time-consuming and require laborious work. This study attempts to develop a method to optimize the AVE curve for earth dams, using the digital elevation model generated by the Shuttle Radar Topography Mission (SRTM) data, and integrate it with the geographic information system (GIS), known as the GIS–SRTM. The proposed method was tested using field data in the Western Desert of Iraq, which is an arid environment. Three constructed small earth dams were selected for this study. The AVE curves were extracted for Horan 2 (H2), Al-gara 2 (G2) and Al-gara 4 (G4) earth dams. Comprehensive analyses have been carried out to evaluate the performance of the AVE curves using the proposed GIS–SRTM method and the field data. From the comparison, the proposed GIS–SRTM method was able to produce reliable AVE curves with a relative error less than 20%. Additionally, the proposed method was less time-consuming and the AVE curves can be visualized immediately. The proposed GIS–SRTM method is relatively supportive in analyzing spatial data to select the optimal site for rainwater harvesting and prevent excessive evaporation losses.  相似文献   
185.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   
186.
The Nagar Parkar Igneous Complex consists of Neoproterozoic igneous and metamorphic rocks dissected by mafic, felsic, and rhyolitic dykes. The latter can be classified broadly into porphyritic felsic dykes intruding gray and pink granites at Nagar Parkar and the surrounding areas, and the orthophyric felsic dykes intruding amphibolites, deformed pink granites, and the alkaline mafic dykes in the Dhedvero area, north of Nagar Parkar. The porphyritic felsic dykes are composed of perthites, quartz, and albitic plagioclase whereas the orthopheric felsic dykes contain K-feldspar (dominant), plagioclase, and minor quartz. Geochemically, the porphyritic and orthophyric felsic dykes are subalkaline and alkaline demonstrating post-orogenic A2- and OIB-A1-type characteristic on Nb–Y–Ce and Nb–Y–3Ga ternary plots, respectively. One orthophyric felsic dyke contains normative acmite and sodium metasilicate. This study suggests two distinct tectonic regimes for the origin of the felsic dykes of the area. The porphyritic felsic dykes show similarities with the ~800–700 Ma granites of the area, the rhyolite dykes of the Mount Abu, western Rajasthan in India, and the granites of the Seychelles microcontinent. The orthophyric felsic dykes show chemical resemblance with the Tavidar volcanic suite of western Rajasthan and the Silhouette and North islands of the Seychelles microcontinent. This study confirms spatial and temporal links among the Rodinian fragments exposed in the Nagar Parkar area of Pakistan, western Rajasthan of India, and the Seychelles microcontinent.  相似文献   
187.
188.
A study of combined effects of valley-weathering and valley-shaperatio on the ground motion characteristics and associated differential ground motion (DGM) is documented in this paper. In order to properly quantify the weathering effects, a forth-order-accurate staggered-grid viscoelastic time-domain finite-difference program has been used for the simulation of SH-wave responses. Simulated results revealed that the defocusing caused by valley is frequency-independent in contrast to the ridge-focusing. A decrease of average spectral amplification (ASA) with an increase of shape-ratio of the non-weathered triangular and elliptical valleys was obtained. Overall, the amplification and de-amplification pattern was larger in case of triangular valleys as compared to the elliptical valleys. It can be concluded that the dwelling within or near the topcorners of weathered valleys may suffer more damage as compared to their surroundings. A weathered triangular valley with large shape-ratio may cause unexpected damage very near its top-corners since both the ASA and DGM are largest.  相似文献   
189.
Hindukush is an active subduction zone where at least one earthquake occurs on daily basis. For seismic hazard studies, it is important to develop a local magnitude scale using the data of local seismic network. We have computed local magnitude scale for Hindukush earthquakes using data from local network belonging to Center for Earthquake Studies (CES) for a period of three years, i.e. 2015–2017. A total of 26,365 seismic records pertaining to 2,683 earthquakes with magnitude 2.0 and greater, was used with hypocentral distance less than 600 km. Magnitude scale developed by using this data comes to be ML = logA + 0.929logr + 0.00298r – 1.84. The magnitude determined through formulated relation was compared with that of standard relation for Southern California and relation developed by the same authors for local network for Northern Punjab. It was observed that Hindukush region has high attenuation as compared to that of Southern California and Northern Punjab which implies that Hindukush is tectonically more disturbed as compared to the said regions, hence, seismically more active as well. We have calculated station correction factors for our network. Station correction factors do not show any pattern which probably owes to the geological and tectonic complexity of this structure. Standard deviation and variance of magnitude residuals for CES network determined using Hutton and Boore scale and scale developed in this study were compared, it showed that a variance reduction of 44.1% was achieved. Average of magnitude residuals for different distance ranges was almost zero which showed that our magnitude scale was stable for all distances up to 600 km. Newly developed magnitude scale will help in homogenization of earthquake catalog. It has been observed that b-value of CES catalog decreases when magnitude is calculated by using newly developed magnitude scale.  相似文献   
190.
Dust storms commonly occur during the pre-monsoon (summer) season in north and northwest parts of India. Characteristics of dust events of the pressure gradient type are well understood. However, comprehensive studies on mechanism of convective dust storms in India are few. A convective dust storm which occurred on 21 April 2010 in association with a western disturbance over North India was hence studied. In the absence of in situ data, we used available satellite data to study the event. Dust storm that occurred on 20 April 2010 on the surface of the Thar Desert transported dust to northern and northwestern parts of India (Rajasthan, Haryana, Delhi and some parts of Uttar Pradesh). This formed a background of aerosols that affected the thunderstorm formed in association with western disturbance and the strong updraft in the thunderstorm carried the dust lingering in the atmosphere to higher altitudes. Large amount of aerosols carried to higher altitude suppressed the chance of precipitation by affecting the cloud top microphysics. Enhancement in evaporation due to an increase in aerosol concentration and strong downdrafts during dissipation of the thunderstorm resulted in emission of dust particles which led to the convective dust event of 21 April 2010.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号