首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   6篇
  国内免费   2篇
大气科学   16篇
地球物理   29篇
地质学   30篇
海洋学   8篇
天文学   12篇
综合类   1篇
自然地理   11篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   9篇
  2010年   4篇
  2009年   7篇
  2008年   8篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1960年   1篇
排序方式: 共有107条查询结果,搜索用时 22 毫秒
51.
The Soil Conservation Service curve number (CN) method is widely used for predicting direct runoff from rainfall. However, despite the extent of cultivation on hillslope areas, very few attempts have been made to incorporate a slope factor into the CN method. The objectives of this study were (1) to evaluate existing approaches integrating slope in the CN method, and (2) to develop an equation incorporating a slope factor into the CN method for application in the steep slope areas of the Loess Plateau of China. The dataset consisted of 11 years of rainfall and runoff measurements from two experimental sites with slopes ranging from 14 to 140%. The results indicated that the standard CN method underestimated large runoff events and overestimated small events. For our experimental conditions, the optimized and non‐optimized forms of the slope‐modified CN method of the Erosion Productivity Impact Calculator model improved runoff prediction for steep slopes, but large runoff events were still underestimated and small ones overpredicted. Based on relationships between slope and the observed and theoretical CN values, an equation was developed that better predicted runoff depths with an R2 of 0·822 and a linear regression slope of 0·807. This slope‐adjusted CN equation appears to be the most appropriate for runoff prediction in the steep areas of the Loess Plateau of China. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
52.
Abstract

The effects of small‐scale surface inhomogeneities on the turbulence structure in the convective boundary layer are investigated using a high‐resolution large‐eddy simulation model. Surface heat flux variations are sinusoidal and two‐dimensional, dividing the total domain into a checkerboard‐like pattern of surface hot spots with a 500‐m wavelength in the x and y directions, or 1/4 of the domain size. The selected wind speeds were 1 and 4 m s‐l, respectively. As a comparison, a simulation of the turbulence structure was performed over a homogeneous surface.

When the wind speed is light, surface heat flux variations influence the horizontally averaged turbulence statistics, including the higher moments despite the small characteristic length of the surface perturbation. Stronger mean wind speeds weaken the effects of inhomogeneous surface conditions on the turbulence structure in the convective boundary layer.

Results from conditional sampling show that when the mean wind speed is small, weak mean circulations occur, with updraft branches above the high heat flux regions and down‐draft branches above the low heat flux regions. The inhomogeneous surface induces significant differences in the turbulence statistics between the high and low heat flux regions. However, the effect of the surface perturbations weaken rapidly when the mean wind speed increases. This research has implications in the explanation of the large‐scale variability commonly encountered in aircraft observations of atmospheric turbulence.  相似文献   
53.
Mountain rivers respond to strong earthquakes by rapidly aggrading to accommodate excess sediment delivered by co-seismic landslides. Detailed sediment budgets indicate that rivers need several years to decades to recover from seismic disturbances, depending on how recovery is defined. We examine three principal proxies of river recovery after earthquake-induced sediment pulses around Pokhara, Nepal's second largest city. Freshly exhumed cohorts of floodplain trees in growth position indicate rapid and pulsed sedimentation that formed a fan covering 150 km2 in a Lesser Himalayan basin with tens of metres of debris between the 11th and 15th centuries AD. Radiocarbon dates of buried trees are consistent with those of nearby valley deposits linked to major medieval earthquakes, such that we can estimate average rates of re-incision since. We combine high-resolution digital elevation data, geodetic field surveys, aerial photos, and dated tree trunks to reconstruct geomorphic marker surfaces. The volumes of sediment relative to these surfaces require average net sediment yields of up to 4200 t km–2 yr–1 for the 650 years since the last inferred earthquake-triggered sediment pulse. The lithological composition of channel bedload differs from that of local bedrock, confirming that rivers are still mostly evacuating medieval valley fills, locally incising at rates of up to 0.2 m yr–1. Pronounced knickpoints and epigenetic gorges at tributary junctions further illustrate the protracted fluvial response; only the distal portions of the earthquake-derived sediment wedges have been cut to near their base. Our results challenge the notion that mountain rivers recover speedily from earthquakes within years to decades. The valley fills around Pokhara show that even highly erosive Himalayan rivers may need more than several centuries to adjust to catastrophic perturbations. Our results motivate some rethinking of post-seismic hazard appraisals and infrastructural planning in active mountain regions. © 2018 John Wiley & Sons, Ltd.  相似文献   
54.
Geochemical constraints on the bimodal origin of High Himalayan leucogranites   总被引:19,自引:0,他引:19  
S. Guillot  P. Le Fort 《Lithos》1995,35(3-4):221-234
Major and trace element and Rb-Sr isotope systematics of the Manaslu leucogranite, Central Nepal, have been examined to constrain the role of mineral fractionation and fluids in peraluminous granite petrogenesis. Biotite and tourmaline are, for the most part, mutually exclusive, with a predominance of two-mica leucogranites over tourmaline leucogranites. The 87Sr/86Sr initial isotopic ratios (Sri) indicate that leucogranitic melts were derived from two different sources, the two-mica leucogranites having a metagreywacke origin (with Sri < 0.752 and εNd < −15) and the tourmaline leucogranites a metapelitic one (Sri> 0.752; εNd > − 15). Such a bimodal nature of the source zone does not directly influence the magmatic evolution, except that probably the higher initial boron content in the metapelitic rocks may increase the Na2O/K2O ratio. In contrast, the amount of water present during melting principally controls in part anatectic processes and element behaviour. Water-saturated conditions probably occured during melting of metagreywackeous rocks and favoured crystallization of two-mica leucogranites whereas water-absent conditions prevailed during melting of metapelitic layers and favoured biotite, plagioclase and monazite fractionation in the source zone and tourmaline crystallization in the leucogranite.  相似文献   
55.
Temperature fluctuations in a convective surface layer were investigated. Box counting analysis was performed to investigate fractal properties of surfaces of constant temperature and was performed on sets of points obtained by setting thresholds on detrended records. Results indicate that surfaces of constant temperature have fractal properties for thresholds far from the mean. Estimated fractal dimensions of one-dimensional cuts through these surfaces varied between 0.23 and 0.66, increasing with threshold value approaching the mean temperature. For thresholds close to the mean, no fractal behavior was found. Asymmetry in results for thresholds above and below the mean temperature was attributed to the asymmetry between updrafts and downdrafts in the convective surface layer.The temperature dissipation rate (TD) was also investigated. It was found to be strongly intermittent with large fluctuations of the intermittency exponent. Moments were analyzed in order to investigate multifractal properties of TD. Results indicate scaling in the range of 50–1000 (where is the Kolmogorov scale) and multifractal properties resembling those observed for passive scalar dissipation in laboratory flows.  相似文献   
56.
Lavaka represent a typical erosional landform in Madagascar. The chronology of their formation remains, however, under discussion. Our research focuses on the Ankarokaroka lavaka, a spectacular landform located in NW Madagascar (Ankarafantsika natural reserve), which is characterized by the presence of sandy units of regional extension at its top. The two main units correspond to white and red sands, and are closely associated with specific vegetations (dry dense forest for the white sands, savannah grasslands for the red sands). We applied a geochronological approach based on Optically Stimulated Luminescence (for the coversands) associated with radiocarbon dating performed on archaeological remains found at the contact between the sands and the lavaka. The combination of this approach with field work and sedimentological analyses makes it possible to show that the sands experienced a complex history, both in terms of sedimentation and post‐sedimentary pedogenesis (podzolization of the white sands, rubefaction of the red sands). The numerical ages furthermore indicate that the Ankarokaroka lavaka formed between 18.5 ± 2.3 ka ago and the 14th century AD. The present study demonstrates that this lavaka has a climatic origin, and highlights the potential of OSL to date sediments associated with Madagascar lavaka. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
57.
This paper investigates the existence of shear sheltering on turbulence data over a quasi-ideal experimental site in Oklahoma, USA. Originally developed for engineering flows, the shear-sheltering theory is predicated upon the idea of low-level jets blocking large eddies aloft, preventing them from propagating to the surface. In this scenario, suppression of low-frequency turbulence energy and reduction of surface fluxes would be expected. Results from the Oklahoma experiment show instead an enhancement of surface turbulence intensity and of the relative contribution of large scales to total (co)variances for low-level jet cases with strong shear, thus suggesting the absence of shear sheltering at the site. The results underline the complexity of surface-atmosphere interactions in nocturnal stable conditions. Atmospheric modeling of exchange using various scenarios of surface characteristics, flow regimes, and low-level jet properties is suggested to further assess the potential applicability of the shear-sheltering theory to atmospheric flows.  相似文献   
58.
Preface     
  相似文献   
59.
The Gangotri leucogranite is the western end of the Badrinath granite, one of the largest bodies of the High Himalayan Leucogranite belt (HHL). It is a typical fine grained tourmaline + muscovite ± biotite leucogranite. The petrography shows a lack of restitic phases. The inferred crystallization sequence is characterized by the early appearance of plagioclase, quartz and biotite and by the late crystallization of the K-feldspar. This suggests that, in spite of being of near minimum melt composition, the granite probably had long crystallization or melting interval, in agreement with previous experimental studies. Tourmaline and muscovite have a mainly magmatic origin. Even though the major element composition is homogeneous, there are several geochemical trends (when CaO decreases there is an increase in Na2O, Rb, Sn, U, B, F and a decrease in K2O, Fe2O3, TiO2, Sr, Ba, Zr, REE, Th) which are best explained by a fractionation process with early crystallizing phases. Experimental solubility models for zircon and monazite in felsic melt support a magmatic origin for these two accessory phases as well.Rb/Sr isotope data show this granite to have, like other HHL, heterogeneous isotopic values for Sr (initial 87Sr/86Sr ratios, calculated at 20 Ma, range between 0.765 and 0.785). Therefore no mixing (i.e. no convection) occurred between the different batches of magma. In contrast 18O data show little variation (13.04% ± 0.25), implying a source with homogeneous 18O values. Differences in timing between fluid infiltration and the onset of melting, related to differences in temperature of the source, could explain why source homogenization occurred for the Gangotri and not for the Manaslu granite.The use of experimental results for solubility and the position of the accessory minerals during melting, predict a low viscosity for the melt during its extraction. This in turn explains the lack of restitic phases (major and accessory) in the granite as well as some field features (lensoid shape, pronounced magmatic layering). Based on the petrographic and isotopic studies, it is suggested that the mechanism of ascent was not diapiric but rather that the melt ascended along several fractures and the level of emplacement was partialy controlled by the density contrast between the melt and host rocks.  相似文献   
60.
Summary We investigate the consequences of Darwinian selection in a daisymodel with uniform temperature, inter-specific competition and multiple daisies. The assumption of a higher competition between species than within them allows for the coexistence of more than two species in equilibrium. Thus, it is the first time that a high biodiversity with equal environment-altering traits at the same trophic level in a daisymodel is reported under stationary conditions. Adaptation in the biota occurs through mutations, leading to changes in the optimum temperature in order to achieve the maximum growth rate at the individual level. We study the planetary sensitivity (i.e. the variation of the global mean temperature due to a 1% change in solar radiation) as a function of the strength of the inter-specific competition and of the number of different species that grow in the model. We find the following: 1) by fixing the parameter that defines the strength of the inter-specific competition, the planetary sensitivity increases as biodiversity increases; 2) by keeping constant the number of different species in the planet, the planetary sensitivity also increases as competition between species increases. In any case, however, the planetary sensitivity associated with adaptive daisies is much greater than that obtained from non-adaptive species. However, the range of mean solar radiation where biota grows in the planet is substantially larger for adaptive species than for non-adaptive ones. This result suggests that adaptation of multiple species with the same environmental-altering traits may not imply a strong regulation of the mean planetary temperature, which differs with recent studies that analyse adaptation of single species. Similar results are obtained by using a constrained adaptation and non-uniform temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号