The chemical composition of several thermal springs around Changbaishan area has been investigated. Cenozoic basaltic rocks are widely distributed in Northeast China and geothermal characteristics have been described. About one hundred hot springs exist around Changhaishan Volcano at the border between China and D.P.R.Korea with high temperature about 82~C. The pH values of the spring water range from 6.9 to 7.1 and the total flow rate is about 4.8 L/sec. The chemical composition of the thermal springs is sodium carbonate; the high-mineral contents of thermal water are believed to have medicinal properties. Bathhouses are already built along the hot springs to take the advantage of the supposed healing properties. The high quality of those hot springs is believed to be utilitized for mineral water. The chemical equilibrium temperatures were estimated at about 160℃ based on the Na-K-Ca geochemical thermometer. 相似文献
Surface adsorbed gas surveys and geo-microbiological surveys are known techniques of petroleum exploration and aim towards risk reduction in exploration by way of identifying the areas warm with hydrocarbons and to establish intense exploration priorities amongst the identified warm areas. The present investigation aims to explore correlation between the adsorbed gas distribution pattern with the distribution of the counts of methane, ethane, propane and butane microbial oxidizers in the sub soil samples to establish the role of the latter in identifying the upward migration of hydrocarbons especially in the known petroliferous Krishna-Godavari Basin, India. A total of 135 soil samples were collected near oil and gas fields of Tatipaka, Pasarlapudi areas of Krishna Godavari Basin, Andhra Pradesh. The soil samples were collected from a depth of 2?C2.5 m. The samples collected, were analyzed for indicator hydrocarbon oxidizing bacteria, adsorbed light gaseous hydrocarbons and carbon isotopes (??13Cmethane). The microbial prospecting studies showed the presence of high bacterial population for methane (3.94 × 105 cfu/gm), ethane (3.85 × 105 cfu/gm), propane (4.85 × 105 cfu/gm) and butane oxidizing bacteria (3.63 × 105 cfu/gm) in soil samples indicating microseepage of hydrocarbons. The light gaseous hydrocarbon analysis showed 83 ppb, 92 ppb, 134 ppb, 187 ppb and 316 ppb of C1, C2, C3, nC4 and nC5, respectively, and the carbon isotopic composition of ??13C1 of the samples ranged between ? 36.6 ?? to ?22.7?? (Pee Dee Belemnite) values, which presents convincing evidence that the adsorbed soil gases collected from these sediments are of thermogenic origin. Geo-microbial prospecting method and adsorbed soil gas and carbon isotope studies have shown good correlation with existing oil/ gas fields of K.G basin. Microbial surveys indicating microseepage of hydrocarbons can, therefore, independently precede other geochemical and geophysical surveys to delineate areas warm with hydrocarbons and mapped microbiological anomalies may provide focus for locales of hydrocarbon accumulation in the K.G basin. 相似文献
We introduce a concept of generalized blending and deblending, develop its models and accordingly establish a method of deblended-data reconstruction using these models. The generalized models can handle real situations by including random encoding into the generalized operators both in the space and time domain, and both at the source and receiver side. We consider an iterative optimization scheme using a closed-loop approach with the generalized blending and deblending models, in which the former works for the forward modelling and the latter for the inverse modelling in the closed loop. We applied our method to existing real data acquired in Abu Dhabi. The results show that our method succeeded to fully reconstruct deblended data even from the fully generalized, thus quite complicated blended data. We discuss the complexity of blending properties on the deblending performance. In addition, we discuss the applicability to time-lapse seismic monitoring as it ensures high repeatability of the surveys. Conclusively, we should acquire blended data and reconstruct deblended data without serious problems but with the benefit of blended acquisition. 相似文献
Catch and effort data were analyzed to estimate the maximum sustainable yield(MSY) of King Soldier Bream, Argyrops spinifer(Forssk?l, 1775, Family: Sparidae), and to evaluate the present status of the fish stocks exploited in Pakistani waters. The catch and effort data for the 25-years period 1985–2009 were analyzed using two computer software packages, CEDA(catch and effort data analysis) and ASPIC(a surplus production model incorporating covariates). The maximum catch of 3 458 t was observed in 1988 and the minimum catch of 1 324 t in 2005, while the average annual catch of A. spinifer over the 25 years was 2 500 t. The surplus production models of Fox, Schaefer, and Pella Tomlinson under three error assumptions of normal, log-normal and gamma are in the CEDA package and the two surplus models of Fox and logistic are in the ASPIC package. In CEDA, the MSY was estimated by applying the initial proportion(IP) of 0.8, because the starting catch was approximately 80% of the maximum catch. Except for gamma, because gamma showed maximization failures, the estimated results of MSY using CEDA with the Fox surplus production model and two error assumptions, were 1 692.08 t(R 2 =0.572) and 1 694.09 t( R 2 =0.606), respectively, and from the Schaefer and the Pella Tomlinson models with two error assumptions were 2 390.95 t( R 2 =0.563), and 2 380.06 t( R 2 =0.605), respectively. The MSY estimated by the Fox model was conservatively compared to the Schaefer and Pella Tomlinson models. The MSY values from Schaefer and Pella Tomlinson models were the same. The computed values of MSY using the ASPIC computer software program with the two surplus production models of Fox and logistic were 1 498 t(R 2 =0.917), and 2 488 t( R 2 =0.897) respectively. The estimated values of MSY using CEDA were about 1 700–2 400 t and the values from ASPIC were 1 500–2 500 t. The estimates output by the CEDA and the ASPIC packages indicate that the stock is overfished, and needs some effective management to reduce the fishing effort of the species in Pakistani waters. 相似文献
1IntroductionThe Late Mesozoic sequences of Afghanistan are important in understanding the geodynamic evolu-tion of the northwestern part of South Asia, in par-ticular the transgressive and regressive history of the northwestern part of the Tethys connecting Iran to the west and the northern Indian Subcontinent to the east. Jurassic to Upper Cretaceous sedimentary seque-nces were initially studied by Griesbach (1885 ~1887) and Hayden (1880~1901) through several traverses in northern an… 相似文献
The aim of this study was to assess trace metal contamination of drinking water in the Pearl Valley, Azad Jammu and Kashmir (Pakistan). The objectives were to determine physical properties and the dissolved concentration of five trace metals, i. e., lead, copper, nickel, zinc, and manganese, in drinking water samples collected from various sites of municipal water supply, natural water springs and wells in the valley. Concentrations of the metals in the water samples were determined by flame atomic absorption spectrometry. Results showed physical parameters, i. e., appearance, taste and odor within acceptable limits and pH was between 5.5 and 7.0. The observed concentrations of the metals varied between sources of water samples and between sampling sites. Maximum dissolved concentration observed was 4.7 mg/L for Pb and Mn, 4.6 mg/L for Zn, 2.9 mg/L for Ni and 2.8 mg/L for Cu. The observed concentrations of the metals were compared with the World Health Organization's guideline values for drinking water. Overall, the quality of water samples taken from the water springs at Mutyal Mara and Bonjosa was good; however, the water quality was unsuitable for drinking in Kiraki, Kharick, and Pothi Bala localities particularly. Finally, the authors discuss possible causes for increased concentrations of the trace metals in drinking water in the study area. 相似文献
Advances in photogrammetry have eased the acquisition of high-resolution digital information from outcrops, enabling faster, non-destructive data capturing and improved reservoir modeling. Geocellular models for flow dynamics with in the virtual outcrop in siliciclastic deposits at different sets of sandstone facies architecture remain, however, a challenge. Digital maps of bedding, lithological contrast, spatial-temporal variations of bedding and permeability characteristics make it more easy to understand flow tortuosity in a particular architecture. An ability to precisely model these properties can improve reservoir characterization and flow modeling at different scales. Here we demonstrate the construction of realistic 2 D sandstone facies based models for a pragmatic simulation of flow dynamics using a combination of digital point clouds dataset acquired from LiDAR and field investigation of the Sandakan Formation, Sabah, Borneo.Additionally, we present methods for enhancing the accuracy of outcrop digital datasets for producing high resolution flow simulation. A well-exposed outcrop from the Sandakan Formation, Sabah, northwest Borneo having a lateral extent of 750 m was chosen in order to implement our research approach. Sandstone facies and its connectivity are well constrained by outcrop observations, data from air-permeability measurements, bilinear interpolation of permeability, grid construction and water vector analysis for flow dynamics.These proportions were then enumerated in terms of static digital outcrop model(DOM) and facies model based on sandstone facies bedding characteristics. Flow simulation of water vector analysis through each of the four sandstone facies types show persistent spatial correlation of permeability that align with either cross-bedded orientation or straight with more dispersion high quality sandstone(porosity 21.25%-41.2%and permeability 1265.20-5986.25 mD) and moderate quality sandstone(porosity 10.44%-28.75% and permeability 21.44-1023.33 mD). Whereas, in more heterolithic sandstone(wavy-to flaser-bedded and bioturbated sandstone), lateral variations in permeability show spatially non-correlated patterns over centimeters to tens of meters with mostly of low quality sandstone(porosity 3.4%-12.31% and permeability < 1 mD to 3.21 mD). These variations reflect the lateral juxtaposition in flow dynamics. It has also been resulted that the vertical connectivity and heterogeneities in terms of flow are mostly pragmatic due to the interconnected sandstone rather than the quality of sandstone. 相似文献
Selecting suitable distributions for rainfall data is usually subjective and complex since it requires decision-makers to consider results from various measures of goodness-of-fit indices. In this study, the VIKOR method in multi-criteria decision-making analysis is modified to select the most suitable plotting positions to represent extreme storm intensities in order to build the intensity–duration–frequency (IDF) curves of storm events. This is done by considering the rankings provided by all goodness-of-fit indices used to obtain a compromise solution. Nine plotting positions are considered: Weibull (W), Adamowski (A), Gringorten (G), Hazen (H) and Gumbel (EV I) and two known plotting positions for generalized extreme value (GEV) distribution using Pearson’s skewness and another two using L-skewness. The IDF curves obtained are compared to a reference IDF curves which was found using the GEV distribution. The mean and median for three goodness-of-fit indices, the coefficient of variation of root mean square error, CVRMSE, the mean percentage of difference, Δ, and the coefficient of determination, R2, are taken as the criteria for selection process. The results show that six plotting positions, A, H, W, G and the two plotting positions with L-skewness, are equally superior compared to the other three plotting positions. 相似文献
Pre and Post-Monsoon levels of ambient SO2, NO2, PM2.5 and the trace metals Fe, Cu, etc. were measured at industrial and residential regions of the Kochi urban area in South India for a period of two years. The mean PM2.5, SO2 and NO2 concentrations across all sites were 38.98?±?1.38 µg/m3, 2.78?±?0.85 µg/m3 and 11.90?±?4.68 µg/m3 respectively, which is lower than many other Indian cities. There was little difference in any on the measured species between the seasons. A few sites exceeded the NAAQS (define acronym and state standard) and most of the sites exceeded WHO (define acronym and state standard) standard for PM2.5. The average trace metal concentrations (ng/m3) were found to be Fe (32.58)?>?Zn (31.93)?>?Ni (10.13)?>?Cr (5.48)?>?Pb (5.37)?>?Cu (3.24). The maximum concentration of trace metals except Pb were reported in industrial areas. The enrichment factor, of metals relative to crustal material, indicated anthropogenic dominance over natural sources for the trace metal concentration in Kochi’s atmosphere. This work demonstrates the importance of air quality monitoring in this area.