首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   5篇
地球物理   13篇
地质学   17篇
海洋学   5篇
天文学   25篇
自然地理   8篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1977年   1篇
  1974年   2篇
  1972年   2篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
31.
INAA, ICP‐AES and ICP‐MS were used to elementally characterise four environmental reference materials – NIST SRM 1646a (Estuarine Sediment), NIST SRM 1400 (Bone Ash), IAEA‐395 (Urban Dust) and IAEA‐450 (Algae). An analytical scheme consisting of the three methods was first applied to NIST SRM 1646a to validate the methodology because it has been extensively analysed and has certified values for many elements. With repeated analyses of NIST SRM 1646a, the accuracy and measurement repeatability of the data obtained were evaluated based on two statistical calculations (zeta‐score and Horwitz ratio) and were observed to be good enough for the analytical scheme to be applied to similar sorts of environmental/geochemical samples. Applying the same approach to NIST SRM 1400, IAEA‐395 and IAEA‐450, enabled mass fractions of 29, 38 and 28 elements to be determined, respectively. Among these results, the data for rare earth elements are of particular interest, not only for IAEA‐450 but also for the other three reference samples. The data for Pr, Gd, Dy, Ho, Er and Tm in NIST SRM 1646a are newly reported in this study. By using small test portions (< 100 mg) for NIST SRM 1646a and IAEA‐395, and recommended minimum amounts for NIST SRM 1400 and IAEA‐450, sample homogeneity was evaluated.  相似文献   
32.
A new method of stiffness‐damping simultaneous identification of building structures is proposed using limited earthquake records. It is shown that when horizontal accelerations are recorded at the floors just above and below a specific storey in a shear building model, the storey stiffness and the damping ratio can be identified uniquely. The viscous damping coefficient and the linear hysteretic damping ratio can also be identified simultaneously in a numerical model structure. The accuracy of the present identification method is investigated through the actual limited earthquake records in a base‐isolated building. It is further shown that an advanced identification technique for mechanical properties of a Maxwell‐type model can be developed by combining the present method with a perturbation technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
33.
The apparent coordinates in the printed material almanacs have inconsistencies concerning the reference frame. These inconsistencies produce secular errors of about 0 . 001/century in the equatorial coordinates and periodic errors of about 0 . 04 in the ecliptic coordinates. It is recommended that the calculation of apparent places of planets should be based on a consistent reference frame as well as on a consistent system of astronomical constants.  相似文献   
34.
Cell densities of phycoerythrin-fluorescing cyanobacteria and other chlorophyll-fluorescing picophytoplankton in the 0.2–2.0 µm size fraction were investigated, using an epifluorescence microscope, in the western North Pacific Ocean (36.5–44.0 °N, 155.0°E) in the summer of 1989. Cyanobacteria were most abundant in the surface of the subtropical water (36.5–38.0°N) and less in the northern sea area (39.5–44.0°N). The cell density of other picophytoplankton was, however, high in the northern part and low in the subtropical water. Results showed that algae other than cyanobacteria may significantly contribute to the picophytoplankton community under the low water temperature conditions of open waters. Chlorophylla concentration represented well the abundance of picophytoplankton other than cyanobacteria, but had no significant correlation with the cyanobacteria cell density. Chlorophylla-based data must be interpreted with caution, since the abundances of cyanobacteria were often considerably different even though the chlorophylla concentrations were the same level.  相似文献   
35.
Abstract— A new grouplet of primitive, metal‐rich chondrites, here called the CB (C, carbonaceous; B, bencubbinite) chondrites, has been recognized. It includes Bencubbin, Weatherford, Hammadah al Hamra (HH) 237 and Queen Alexandra Range (QUE) 94411, paired with QUE 94627. Their mineral compositions, as well as their oxygen and nitrogen isotopic compositions, indicate that they are closely related to the CR and CH chondrites, all of which are members of the more inclusive CR clan. CB chondrites have much greater metal/silicate ratios than any other chondrite group, widely increasing the range of metal/silicate fractionation recorded in solar nebular processes. They also have the greatest moderately volatile lithophile element depletions of any chondritic materials. Metal has compositional trends and zoning patterns that suggest a primitive condensation origin, in contrast with metal from other chondrite groups. CB chondrites, as well as other CR clan chondrites, have much heavier nitrogen (higher 15N/14N) than that in other chondrite groups. The primitive characteristics of the CB chondrites suggest that they contain one of the best records of early nebular processes. Another chondrite, Grosvenor Mountains 95551, is petrographically similar to the CB chondrites, but its mineral and oxygen and nitrogen isotope compositions indicate that it formed from a different nebular reservoir.  相似文献   
36.
37.
Abstract— Inductively coupled plasma mass spectrometry (ICP-MS) was successfully applied to bulk samples of Allende, Jilin, Modoc, Saint-Séverin and Atlanta for the determination of rare earth elements (REE) (Y and 14 lanthanoids), Th and U. The results of ICP-MS showed good agreement with recommended values, and their reproducibilities were high enough to discuss the detailed abundances of lanthanoids and actinoids in chondritic meteorites. For the Allende reference sample issued by the Smithsonian Institution, a positive anomaly of Tm, a fractionation between light REE and heavy REE and a high Th/U ratio were observed in the CI-normalized abundances of REE, Th and U. These features are common for group II inclusions in Allende, suggesting that the abundances of refractory lithophiles in Allende are somewhat influenced by those in a specific constituent. For the other chondritic meteorites, a zigzag alteration was commonly observed in the heavy-REE region of their CI-normalized abundance patterns. It is suggested that such a zigzag pattern is attributable to erratically high abundances of monoisotopic REE (Tb, Ho and Tm) in the CI values. Abundances of REE, Th and U in the bulk samples are also discussed separately in detail.  相似文献   
38.
A new abundance table has been compiled, based on a critical review of all C1 chondrite analyses up to mid-1982. Where C1 data were inaccurate or lacking, data for other meteorite classes were used, but with allowance for fractionation among classes. In a number of cases, interelement ratios from meteorites or lunar and terrestrial rocks as well as solar wind were used to check and constrain abundances. A few elements were interpolated (Ar, Kr, Xe, Hg) or estimated from astronomical data (H, C, N, O, He, Ne).For most elements, the new abundances differ by less than 20% from those of Cameron (1982a). In 14 cases, the change is between 20 and 50% (He, Ne, Be, Br, Nb, Te, I, Xe, La, Gd, Tb, Yb, Ta and Pb) and in 5 others, it exceeds 50% (B, P, Mo, W, Hg). Some important interelement ratios (NaK, SeTe, RbSr, KrXe, LaW, ThU, PbU, etc.) are significantly affected by these changes.Three tests were carried out, to see how closely C1 chondrites approximate primordial solar system abundances. (1) A plot of solar vs Cl abundances shows only 7 discrepancies by more than twice the nominal error of the solar abundance: Ga, Ge, Nb, Ag, Lu, W and Os. Most or all apparently reflect errors in the solar data or f-values. (2) The major cosmochemical groups (refractories, siderophiles, volatiles, etc.) show no significant fractionation between the Sun and C1's, except possibly for a slight enrichment of volatiles in Cl's. (3) Abundances of odd-A nuclides between A = 65 and 209 show an almost perfectly smooth trend, with elemental abundances conforming to the slope defined by isotopic abundances. There is no evidence for systematic fractionation of the major cosmochemical groups from each other. Small irregularities (10–15%) show up in the Ag-Cd-In and Sm-Eu regions; the former may be due to a ~ 15% error in the Ag abundance and the latter, to a 10–20% fractionation of Eu during condensation, to contamination of C1 chondrites with interplanetary dust during regolith exposure, or to a change from s-process to r-process dominance.It appears that the new set of abundances is accurate to at least 10%, as irregularities of 5–10% are readily detectable. Accordingly, Cl chondrites seem to match primordial solar-system matter to ? 10%, with only four exceptions. Br and I are definitely and B is possibly fractionated by hydrothermal alteration, whereas Eu seems to be enriched by nebular condensation or regolith contamination.  相似文献   
39.
Zircon U–Pb ages of two acidic tuff and two turbidite sandstone samples from the Nakanogawa Group, Hidaka Belt, were measured to estimate its depositional age and the development of the Hokkaido Central Belt, northeast Japan. In the northern unit, homogeneous zircons from pelagic acidic tuff from a basal horizon dated to 58–57 Ma, zircons from sandstone from the upper part of the unit dated to 56–54 Ma, and zircons from acidic tuff from the uppermost part dated to 60–56 Ma and 69–63 Ma. Both of the tuff U–Pb ages are significantly older than the youngest radiolarian fossil age (66–48 Ma). Therefore, the maximum depositional age of the turbidite facies in the northern unit is 58 Ma and the younger age limit, estimated from the fossil age, is 48 Ma. In the southern unit, homogeneous zircons from turbidite sandstone dated to 58–57 Ma. Thus the depositional age of this turbidite facies was interpreted to be 66–56 Ma from the fossil age, probably close to 57 Ma. Most of the zircon U–Pb ages from the Nakanogawa Group are younger than 80 Ma, with a major peak at 60 Ma. This result implies that around Hokkaido volcanic activity occurred mainly after 80 Ma. Older zircon ages (120–80 Ma, 180–140 Ma, 340–220 Ma, 1.9 Ga, 2.2 Ga, and 2.7 Ga) give information about the provenance of other rocks in the Hidaka Belt. It is inferred that the Nakanogawa Group comprises protoliths of the upper sequence of the Hidaka Metamorphic Zone, which therefore has the same depositional age as the Nakanogawa Group (66–48 Ma). The depositional ages of the lower sequence of the Hidaka Metamorphic Zone and the Nakanogawa Group are probably the same.  相似文献   
40.
Trace amounts of three halogens (chlorine, bromine and iodine) in seventeen U.S. Geological Survey (USGS) geochemical reference materials were determined by radiochemical neutron activation analysis (RNAA). The materials analysed were AGV‐2 (andesite), BCR‐2, BHVO‐2 and BIR‐1a (basalts), CLB‐1 (coal), COQ‐1 (carbonatite), DGPM‐1 (disseminated gold ore), DNC‐1a (dolerite), DTS‐2b (dunite), GSP‐2 (granodiorite), Nod‐A‐1 and Nod‐P‐1 (manganese nodules), QLO‐1a (quartz latite), SBC‐1 (marine shale), SDC‐1 (mica schist), SGR‐1b (shale rock) and W‐2a (diabase). The chlorine, bromine and iodine contents were determined to be 5.64 mg kg?1 (BIR‐1a) to 4410 mg kg?1 (Nod‐A‐1), 0.039 mg kg?1 (BIR‐1a) to 52.1 mg kg?1 (CLB‐1), and 0.041 mg kg?1 (BIR‐1a) to 599 mg kg?1 (CLB‐1), respectively. The RNAA data of the three halogens were compared with the corresponding data in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号