全文获取类型
收费全文 | 3337篇 |
免费 | 1024篇 |
国内免费 | 15篇 |
专业分类
测绘学 | 69篇 |
大气科学 | 44篇 |
地球物理 | 2004篇 |
地质学 | 1275篇 |
海洋学 | 210篇 |
天文学 | 520篇 |
综合类 | 1篇 |
自然地理 | 253篇 |
出版年
2023年 | 2篇 |
2021年 | 33篇 |
2020年 | 60篇 |
2019年 | 196篇 |
2018年 | 198篇 |
2017年 | 293篇 |
2016年 | 332篇 |
2015年 | 348篇 |
2014年 | 373篇 |
2013年 | 425篇 |
2012年 | 294篇 |
2011年 | 280篇 |
2010年 | 261篇 |
2009年 | 176篇 |
2008年 | 217篇 |
2007年 | 154篇 |
2006年 | 118篇 |
2005年 | 112篇 |
2004年 | 95篇 |
2003年 | 107篇 |
2002年 | 95篇 |
2001年 | 83篇 |
2000年 | 86篇 |
1999年 | 15篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 4篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1933年 | 1篇 |
排序方式: 共有4376条查询结果,搜索用时 15 毫秒
991.
The Piceance Creek basin formed as a continental foreland basin ca 53 to 48 Ma in the early to middle Eocene. On a global basis, the basin contains one of the richest oil shale resources known, where the profundal oil shale deposits, kerogen‐rich mudstones (clay and carbonate), exist over most of the basin. Despite its economic importance, the evolution of the Piceance Creek basin is still somewhat unclear. Based on facies association analysis, depositional trends, and gamma ray and Fischer assay data, six evolutionary lake stages are recognized: (i) fresh lake; (ii) transitional lake; (iii) highly fluctuating lake; (iv) rising lake; (v) high lake; and (vi) closing lake. Lake stages are composed of depositional units and characterize large‐scale changes in sedimentological patterns, depositional trends and fluctuations in the oil shale richness related to changes in climate and tectonics. Lake stage evolution is also consistent with the global Eocene climate trend. Stage 1 formed prior to the Eocene climate optimum. At the beginning of the Eocene climate optimum, a saline‐restricted lake formed (Stage 2) and evolved into the highly fluctuating lake (Stage 3) indicating rapid climate changes during the peak of the Eocene climate optimum. This stage was followed by the rising and high lakes (Stages 4 and 5) after the climate optimum and during a change to a more humid climate. The closing of the lake (Stage 6) was caused by increased sand input from the north, indicating the influence of both tectonics and climate. Based on depositional trends and climate evolution, it is suggested that, during the arid climate, laterally heterogeneous highly cyclic depositional units dominate, whereas, during the humid climate, depositional units form laterally continuous sediments that can be traced over long distances. 相似文献
992.
Analytical solutions are presented for fluid‐saturated linear poroelastic beams under pure bending. The stress‐free boundary condition at the lateral surfaces is satisfied in the St Venant's sense and the Beltrami–Michell compatibility conditions are resolved rigorously, rendering the flexure of the beams analytically tractable. Two sets of formulations are derived based on the coupled and uncoupled diffusion equations respectively. The analytical solutions are compared with three‐dimensional finite element simulations. Both sets of analytical formulations are capable of capturing exactly both the initial (undrained) and the steady‐state (fully drained) deflection of the beams. However, the analytical solutions are found to be deficient during the transient phase. The cause for the deficiency of the transient analytical solutions is discussed. The accuracy of the analytical solutions improves as Poisson's ratio and the compressibility of the constituents of the porous beam increase, where the St Venant's edge effect at the lateral surfaces is mitigated. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
993.
A. Brunthaler M.J. Reid K.M. Menten X.‐W. Zheng A. Bartkiewicz Y.K. Choi T. Dame K. Hachisuka K. Immer G. Moellenbrock L. Moscadelli K.L.J. Rygl A. Sanna M. Sato Y. Wu Y. Xu B. Zhang 《Astronomische Nachrichten》2011,332(5):461-466
Astrometric Very Long Baseline Interferometry (VLBI) observations of maser sources in the Milky Way are used to map the spiral structure of our galaxy and to determine fundamental parameters such as the rotation velocity (Θ0) and curve and the distance to the Galactic center (R0). Here, we present an update on our first results, implementing a recent change in the knowledge about the Solar motion. It seems unavoidable that the IAU recommended values for R0 and Θ0 need a substantial revision. In particular the combination of 8.5 kpc and 220 km s–1 can be ruled out with high confidence. Combining the maser data with the distance to the Galactic center from stellar orbits and the proper motion of Sgr A* gives best values of R0 = 8.3 ± 0.23 kpc and Θ0 = 239 or 246±7 km s–1, for Solar motions of V⊙ = 12.23 and 5.25 km s–1, respectively. Finally, we give an outlook to future observations in the Bar and Spiral Structure Legacy (BeSSeL) survey (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
994.
C. Alwmark S. Alwmark‐Holm J. Ormö E. Sturkell 《Meteoritics & planetary science》2014,49(6):1076-1082
The Målingen structure in Sweden has for a long time been suspected to be the result of an impact; however, no hard evidence, i.e., shock metamorphic features or traces of the impactor, has so far been presented. Here we show that quartz grains displaying planar deformation features (PDFs) oriented along crystallographic planes typical for shock metamorphism are present in drill core samples from the structure. The shocked material was recovered from basement breccias, below the sediment infill, and the distribution of the orientation of the shock‐produced PDFs indicates that the studied material experienced low shock pressures. Based on our findings, we can exclude that the material is transported from the nearby Lockne impact structure, which means that the Målingen structure is a separate impact structure, the seventh confirmed impact structure in Sweden. Furthermore, sedimentological and biostratigraphic aspects of the deposits that fill the depression at Målingen are very similar to features at the Lockne impact structure. This implies a coeval formation age and thus also the confirmation of the first known marine target doublet impact craters on Earth (i.e., the Lockne–Målingen pair). 相似文献
995.
Weather radar has a potential to provide accurate short‐term (0–3 h) forecasts of rainfall (i.e. radar nowcasts), which are of great importance in warnings and risk management for hydro‐meteorological events. However, radar nowcasts are affected by large uncertainties, which are not only linked to limitations in the forecast method but also because of errors in the radar rainfall measurement. The probabilistic quantitative precipitation nowcasting approach attempts to quantify these uncertainties by delivering the forecasts in a probabilistic form. This study implements two forms of probabilistic quantitative precipitation nowcasting for a hilly area in the south of Manchester, namely, the theoretically based scheme [ensemble rainfall forecasts (ERF)‐TN] and the empirically based scheme (ERF‐EM), and explores which one exhibits higher predictive skill. The ERF‐TN scheme generates ensemble forecasts of rainfall in which each ensemble member is determined by the stochastic realisation of a theoretical noise component. The so‐called ERF‐EM scheme proposed and applied for the first time in this study, aims to use an empirically based error model to measure and quantify the combined effect of all the error sources in the radar rainfall forecasts. The essence of the error model is formulated into an empirical relation between the radar rainfall forecasts and the corresponding ‘ground truth’ represented by the rainfall field from rain gauges measurements. The ensemble members generated by the two schemes have been compared with the rain gauge rainfall. The hit rate and the false alarm rate statistics have been computed and combined into relative operating characteristic curves. The comparison of the performance scores for the two schemes shows that the ERF‐EM achieves better performance than the ERF‐TN at 1‐h lead time. The predictive skills of both schemes are almost identical when the lead time increases to 2 h. In addition, the relation between uncertainty in the radar rainfall forecasts and lead time is also investigated by computing the dispersion of the generated ensemble members. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
996.
This work was undertaken for two main purposes. One was to examine spatial and temporal variability in surface water repellency under field conditions in sandy loam forest soils of NW Spain, and its relationship to weather and soil moisture conditions. The other purpose was to get further inside in the dynamics of soil water repellency by studying a wetting–drying cycle under controlled laboratory conditions. Both for the field and laboratory study, water repellency was determined using the Water Drop Penetration Time test. Soil water repellency under field conditions was found to exhibit a seasonal pattern, i.e. it peaked during the summer and was absent between November and May. The time required for repellency to become re‐established during the spring was shorter under eucalyptus than under pine. Spatial variability peaked at an early stage of soil drying and was minimal during the wet period when soils were hydrophilic as well as at the end of the summer, when repellency was strongest. Spatial and temporal variability in water repellency was found to be negatively correlated with soil moisture and, to a lesser extent, with antecedent rainfall. The moisture range of the so‐called transition zone (below which the soil is hydrophobic and also above which it is hydrophobic) differed for the pine (21–50%) and eucalyptus plantations (17–36%). The lower and upper bounds of the transition zone agreed well with the soil moisture contents at the permanent wilting point and at field capacity, respectively. The laboratory results with samples in the wetting phase confirmed those of the field tests. Water repellency increased slightly during the drying phase, but not so much as in the field. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
997.
The classical finite‐difference methods for seismic wave modelling are very accurate at low wavenumbers but suffer from inaccuracies at high wavenumbers, particularly at Nyquist wavenumber. In contrast, the optimisation finite‐difference methods reduce inaccuracies at high wavenumbers but suffer from inaccuracies at low wavenumbers, particularly at zero wavenumber when the operator length is not long and the whole range of wavenumbers is considered. Inaccuracy at zero wavenumber means that the optimisation methods only have a zeroth‐order accuracy of truncation and thus are not rigorously convergent. To guarantee the rigorous convergence of the optimisation methods, we have developed accuracy‐constrained optimisation methods. Different‐order accuracy‐constrained optimisation methods are presented. These methods not only guarantee the rigorous convergence but also reduce inaccuracies at low wavenumbers. Accuracy‐constrained optimisation methods are applied to staggered‐grid elastic wave modelling. 相似文献
998.
999.
V. de Montety V. Marc C. Emblanch J.‐P. Malet C. Bertrand O. Maquaire T.A. Bogaard 《地球表面变化过程与地形》2007,32(1):32-48
The Super‐Sauze mudslide is a persistently active slow‐moving landslide occurring in the black marl outcrops of the French South Alps. It has been intensively studied since the early 1990s. Geotechnical, geomorphological, geophysical and hydrological investigations have led to a better understanding of the processes governing the landslide motion. Water ?ows inside the system have been proven to have a major impact. To look closer at the processes involved and especially to gain a better idea of the origin and pathways of the waters, a hydrochemical study was carried out from May 2003 to May 2004. The groundwater was sampled during ?ve ?eld campaigns spread uniformly over the year. Groundwater from a network of boreholes was collected as well as spring waters from the fractured bedrock (in situ black marl) and from the moraine aquifer above the landslide. Results showed that the groundwater chemistry could not be fully explained by rainfall recharge or simple water–matrix equilibrium. A contribution of saline waters coming from the bottom of a thrust sheet overhanging the landslide was required to get the observed high mineralization. On a ?ow line, the hydrochemical evolution was related to both soil–matrix equilibrium and deep water sources coming up to the surface by means of major faults, the bedding planes and the schistosity. Hydrochemical anomalies made it possible to point out such contributions locally. It was shown that water chemistry and landslide activity were closely related. This hydrochemical investigation also enabled us to better de?ne the hydrosystem limits.Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
1000.