首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   626篇
  免费   37篇
  国内免费   10篇
测绘学   16篇
大气科学   53篇
地球物理   211篇
地质学   165篇
海洋学   62篇
天文学   74篇
综合类   4篇
自然地理   88篇
  2023年   5篇
  2022年   3篇
  2021年   12篇
  2020年   11篇
  2019年   13篇
  2018年   9篇
  2017年   15篇
  2016年   14篇
  2015年   20篇
  2014年   22篇
  2013年   36篇
  2012年   30篇
  2011年   24篇
  2010年   26篇
  2009年   43篇
  2008年   36篇
  2007年   44篇
  2006年   32篇
  2005年   21篇
  2004年   26篇
  2003年   21篇
  2002年   31篇
  2001年   15篇
  2000年   16篇
  1999年   11篇
  1998年   21篇
  1997年   10篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   9篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   7篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1973年   3篇
  1934年   1篇
排序方式: 共有673条查询结果,搜索用时 0 毫秒
81.
82.
The Sutter's Mill C‐type meteorite fall occurred on 22 April 2012 in and around the town of Coloma, California. The exact location of the meteorite fall was determined within hours of the event using a combination of eyewitness reports, weather radar imagery, and seismometry data. Recovery of the first meteorites occurred within 2 days and continued for months afterward. The recovery effort included local citizens, scientists, and meteorite hunters, and featured coordination efforts by local scientific institutions. Scientific analysis of the collected meteorites revealed characteristics that were available for study only because the rapid collection of samples had minimized terrestrial contamination/alteration. This combination of factors—rapid and accurate location of the event, participation in the meteorite search by the public, and coordinated scientific investigation of recovered samples—is a model that was widely beneficial and should be emulated in future meteorite falls. The tools necessary to recreate the Sutter's Mill recovery are available, but are currently underutilized in much of the world. Weather radar networks, scientific institutions with interest in meteoritics, and the interested public are available globally. Therefore, it is possible to repeat the Sutter's Mill recovery model for future meteorite falls around the world, each for relatively little cost with a dedicated researcher. Doing so will significantly increase the number of fresh meteorite falls available for study, provide meteorite material that can serve as the nuclei of new meteorite collections, and will improve the public visibility of meteoritics research.  相似文献   
83.
本文总结了钙华体次生有机体系中生物群落特征和界面结晶行为,根据生物在碳酸盐沉积中的角色,将钙华体中次生有机体系的界面结晶矿化类型分为生物控制矿化沉积和生物诱导矿化沉积。分述了碳酸钙沉积矿化相关的五种生物代谢活动,讨论了生物胞外聚合物(EPS)对碳酸钙矿物晶型和形貌的影响。针对目前钙华研究中存在的问题,今后应深入研究生物体主要构成元素、生物小分子和生物体内部组织在钙华形成或退化中的作用,进一步厘清钙华体与次生有机体系的多界面溶化方式,为钙华保护修复及钙华退化治理措施提供科学依据。   相似文献   
84.
Talat  Ahmad  Kabita C.  Longjam  Baishali  Fouzdar  Mike J.  Bickle  Hazel J.  Chapman 《Island Arc》2009,18(1):155-174
The Sakoli Mobile Belt comprises bimodal volcanic rocks that include metabasalt, rhyolite, tuffs, and epiclastic rocks with metapelites, quartzite, arkose, conglomerate, and banded iron formation (BIF). Mafic volcanic rocks are tholeiitic to quartz‐tholeiitic with normative quartz and hypersthene. SiO2 shows a large compositional gap between the basic and acidic volcanics, depicting their bimodal nature. Both the volcanics have distinct geochemical trends but display some similarity in terms of enriched light rare earth element–large ion lithophile element characteristics with positive anomalies for U, Pb, and Th and distinct negative anomalies for Nb, P, and Ti. These characteristics are typical of continental rift volcanism. Both the volcanic rocks show strong negative Sr and Eu anomalies indicating fractionation of plagioclases and K‐feldspars, respectively. The high Fe/Mg ratios for the basic rocks indicate their evolved nature. Whole rock Sm–Nd isochrons for the acidic volcanic rocks indicate an age of crystallization for these volcanic rocks at about 1675 ± 180 Ma (initial 143Nd/144Nd = 0.51017 ± 0.00017, mean square weighted deviate [MSWD] = 1.6). The εNdt (t = 2000 Ma) varies between ?0.19 and +2.22 for the basic volcanic rock and between ?2.85 and ?4.29 for the acidic volcanic rocks. Depleted mantle model ages vary from 2000 to 2275 Ma for the basic and from 2426 to 2777 Ma for the acidic volcanic rocks, respectively. These model ages indicate that protoliths for the acidic volcanic rocks probably had a much longer crustal residence time. Predominantly basaltic magma erupted during the deposition of the Dhabetekri Formation and part of it pooled at crustal or shallower subcrustal levels that probably triggered partial melting to generate the acidic magma. The influence of basic magma on the genesis of acidic magma is indicated by the higher Ni and Cr abundance at the observed silica levels of the acidic magma. A subsequent pulse of basic magma, which became crustally contaminated, erupted as minor component along with the dominantly acidic volcanics during the deposition of the Bhiwapur Formation.  相似文献   
85.
Dougal A. Jerram  Mike Widdowson   《Lithos》2005,79(3-4):385-405
The internal architecture of the immense volumes of eruptive products in Continental Flood Basalt Provinces (CFBPs) provides vital clues, through the constraint of a chrono-stratigraphic framework, to the origins of major intraplate melting events. This work presents close examination of the internal facies architecture and structure, duration of volcanism, epeirogenetic uplift associated with CFBPs, and the potential environmental impacts of three intensely studied CFBPs (the Parana-Etendeka, Deccan Traps and North Atlantic Igneous Province). Such a combination of key volcanological, stratigraphic and chronologic observations can reveal how a CFBP is constructed spatially and temporally to provide crucial geological constraints regarding their development.

Using this approach, a typical model can be generated, on the basis of the three selected CFBPs, that describes three main phases of flood basalt volcanism. These phases are recognized in Phanerozoic CFBPs globally. At the inception of CFBP volcanism, relatively low-volume transitional-alkaline eruptions are forcibly erupted into exposed cratonic basement lithologies, sediments, and in some cases, water. Distribution of initial volcanism is strongly controlled by the arrangement of pre-existing topography, the presence of water bodies and local sedimentary systems, but is primarily controlled by existing lithospheric and crustal weaknesses and concurrent regional stress patterns. The main phase of volcanism is typically characterised by a culmination of repeated episodes of large volume tholeiitic flows that predominantly generate large tabular flows and flow fields from a number of spatially restricted eruption sites and fissures. These tabular flows build a thick lava flow stratigraphy in a relatively short period of time (c. 1–5 Ma). With the overall duration of flood volcanism lasting 5–10 Ma (the main phase accounting for less than half the overall eruptive time in each specific case). This main phase or ‘acme’ of volcanism accounts for much of the CFBP eruptive volume, indicating that eruption rates are extremely variable over the whole duration of the CFBP. During the waning phase of flood volcanism, the volume of eruptions rapidly decrease and more widely distributed localised centres of eruption begin to develop. These late-stage eruptions are commonly associated with increasing silica content and highly explosive eruptive products. Posteruptive modification is characterised by continued episodes of regional uplift, associated erosion, and often the persistence of a lower-volume mantle melting anomaly in the offshore parts of those CFBPs at volcanic rifted margins.  相似文献   

86.
Our current understanding on sedimentary deep-water environments is mainly built of information obtained from tectonic settings such as passive margins and foreland basins. More observations from extensional settings are particularly needed in order to better constrain the role of active tectonics in controlling sediment pathways, depositional style and stratigraphic stacking patterns. This study focuses on the evolution of a Plio-Pleistocene deep-water sedimentary system (Rethi-Dendro Formation) and its relation to structural activity in the Amphithea fault block in the Corinth Rift, Greece. The Corinth Rift is an active extensional basin in the early stages of rift evolution, providing perfect opportunities for the study of early deep-water syn-rift deposits that are usually eroded from the rift shoulders due to erosion in mature basins like the Red Sea, North Sea and the Atlantic rifted margin. The depocentre is located at the exit of a structurally controlled sediment fairway, approximately 15 km from its main sediment source and 12 km basinwards from the basin margin coastline. Fieldwork, augmented by digital outcrop techniques (LiDAR and photogrammetry) and clast-count compositional analysis allowed identification of 16 stratigraphic units that are grouped into six types of depositional elements: A—mudstone-dominated sheets, B—conglomerate-dominated lobes, C—conglomerate channel belts and sandstone sheets, D—sandstone channel belts, E—sandstone-dominated broad shallow lobes, F—sandstone-dominated sheets with broad shallow channels. The formation represents an axial system sourced by a hinterland-fed Mavro delta, with minor contributions from a transverse system of conglomerate-dominated lobes sourced from intrabasinal highs. The results of clast compositional analysis enable precise attribution for the different sediment sources to the deep-water system and their link to other stratigraphic units in the area. Structures in the Amphithea fault block played a major role in controlling the location and orientation of sedimentary systems by modifying basin-floor gradients due to a combination of hangingwall tilt, displacement of faults internal to the depocentre and folding on top of blind growing faults. Fault activity also promoted large-scale subaqueous landslides and eventual uplift of the whole fault block.  相似文献   
87.
A regional fluid inclusion study of Cu-Au (+Zn-Pb) mineralisation in the Harlech Dome area, North Wales, gives support to the concept of two distinct metallogenic episodes. The inclusion assemblages associated with the porphyry copper mineralisation at Coed-y-Brenin are consistent with a genetic model of early potassic-propylitic alteration overprinted by later phyllic alteration. High salinity fluids, normally characteristic of potassic alteration, are confined to the host rock quartz. The meteoric/hydrothermal system is closely linked to the emplacement of late-Cambrian diorites. Integrated fluid inclusion and mineralogical studies of the Gold-belt veins suggest that the mineralising fluids were probably dehydration waters released from weakly metamorphosed Cambrian and perhaps Precambrian sediments during hydraulic fracturing in a tensional zone at the close of the Caledonian orogeny. Localisation of economic concentrations of gold in veins at the level of the Clogau Formation is ascribed to a destabilisation of metal complexes caused by a change in fluid buffering from a pyrite-magnetite assemblage in the Lower Cambrian sediments to a pyrite-pyrrhotite-graphite assemblage in the Upper Cambrian sediments. Veining associated with the Coed-y-Brenin porphyry copper deposit and related breccia pipes can be distinguished from the copper-gold veins of the coextensive Dolgellau Gold-belt by the presence in the former of inclusions notably richer in CO2. Furthermore the Gold-belt fluids have a distinctive low CO2/CH4+N2+H2 ratio.  相似文献   
88.
Gold mineralisation in the White River area, 80 km south of the highly productive Klondike alluvial goldfield, is hosted in amphibolite facies gneisses in the same Permian metamorphic pile as the basement for the Klondike goldfield. Hydrothermal fluid which introduced the gold was controlled by fracture systems associated with middle Cretaceous to early Tertiary extensional faults. Gold deposition occurred where highly fractured and chemically reactive rocks allowed intense water–rock interaction and hydrothermal alteration, with only minor development of quartz veins. Felsic gneisses were sericitised with recrystallisation of hematite and minor arsenic mobility, and extensively pyritised zones contain gold and minor arsenic (ca 10 ppm). Graphitic quartzites (up to 5 wt.% carbon) caused chemical reduction of mineralising fluids, with associated recrystallisation of metamorphic minerals (graphite, pyrrhotite, pyrite, chalcopyrite) in host rocks and veins, and introduction of arsenic (up to 1 wt.%) to form arsenopyrite in veins and disseminated through host rock. Veins have little or no hydrothermal quartz, and up to 19 wt.% carbon as graphite. Late-stage oxidation of arsenopyrite in some graphitic veins has formed pharmacosiderite. Gold is closely associated with disseminated and vein sulphides in these two rock types, with grades of up to 3 ppm on the metre scale. Other rock types in the White River basement rocks, including biotite gneiss, hornblende gneiss, pyroxenite, and serpentinite, have not developed through-going fracture systems because of their individual mineralogical and rheological characteristics, and hence have been little hydrothermally altered themselves, have little hydrothermal gold, and have restricted flow of fluids through the rock mass. Some small post-metamorphic quartz veins (metre scale) have been intensely fractured and contain abundant gold on fractures (up to 40 ppm), but these are volumetrically minor. The style of gold mineralisation in the White River area is younger than, and distinctly different from, that of the Klondike area. Some of the mineralised zones in the White River area resemble, mineralogically and geochemically, nearby coeval igneous-hosted gold deposits, but this resemblance is superficial only. The White River mineralisation is an entirely new style of Yukon gold deposit, in which host rocks control the mineralogy and geochemistry of disseminated gold, without quartz veins.  相似文献   
89.
There is a correspondence between flow in a reservoir and large scale permeability trends. This correspondence can be derived by constraining reservoir models using observed production data. One of the challenges in deriving the permeability distribution of a field using production data involves determination of the scale of resolution of the permeability. The Adaptive Multiscale Estimation (AME) seeks to overcome the problems related to choosing the resolution of the permeability field by a dynamic parameterisation selection. The standard AME uses a gradient algorithm in solving several optimisation problems with increasing permeability resolution. This paper presents a hybrid algorithm which combines a gradient search and a stochastic algorithm to improve the robustness of the dynamic parameterisation selection. At low dimension, we use the stochastic algorithm to generate several optimised models. We use information from all these produced models to find new optimal refinements, and start out new optimisations with several unequally suggested parameterisations. At higher dimensions we change to a gradient-type optimiser, where the initial solution is chosen from the ensemble of models suggested by the stochastic algorithm. The selection is based on a predefined criterion. We demonstrate the robustness of the hybrid algorithm on sample synthetic cases, which most of them were considered insolvable using the standard AME algorithm.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号