A detailed compilation of distal tephrostratigraphy comprising the last 20,000 yrs is given for the Central Mediterranean region. A total of 47 distinct ash layers identified in the maar lake sediments of Lago Grande di Monticchio (Basilicata, Southern Italy) are compared with proximal and distal terrestrial-marine tephra deposits in the circum-central Mediterranean region. The results of these studies provide valuable information for reconstructing the Late Pleistocene and the Holocene dispersal of pyroclastic deposits from south Italian explosive volcanoes, in particular Somma-Vesuvius, the Campi Flegrei caldera, Ischia Island and Mount Etna. Prominent tephras are discussed with respect to their reliability as dating and correlation tools in sedimentary records. Ashes from Plinian eruptions of Somma-Vesuvius (i.e. Avellino, Mercato, Greenish, Pomici di Base), for instance, are well-defined by their distribution patterns and their unique composition. The widespread Y-1 tephra from Mount Etna, on the other hand, derived most likely from two distinct Plinian events with changing wind conditions, and therefore becomes a less reliable stratigraphic marker. Statistical–numerical calculations are presented in order to discriminate between Holocene tephras from the Campi Flegrei caldera (i.e. Astroni 1–3, Agnano Monte Spina, Averno 1, Lagno Amendolare), since these ashes are characterized by an almost indistinguishable chemical fingerprint. As a highlight, numerous Campanian eruptions of proposed low-intensity have been identified in the distal site of Monticchio suggesting a revision of existing tephra dispersal maps and re-calculation of eruptive conditions. In summary, the tephra record of Monticchio is one of the key successions for linking both, terrestrial records from Central-southern Italy and marine sequences from the Tyrrhenian, Adriatic and Ionian Seas. 相似文献
This paper introduces an efficiency improvement to the sparse‐grid geometric sampling methodology for assessing uncertainty in non‐linear geophysical inverse problems. Traditional sparse‐grid geometric sampling works by sampling in a reduced‐dimension parameter space bounded by a feasible polytope, e.g., a generalization of a polygon to dimension above two. The feasible polytope is approximated by a hypercube. When the polytope is very irregular, the hypercube can be a poor approximation leading to computational inefficiency in sampling. We show how the polytope can be regularized using a rotation and scaling based on principal component analysis. This simple regularization helps to increase the efficiency of the sampling and by extension the computational complexity of the uncertainty solution. We demonstrate this on two synthetic 1D examples related to controlled‐source electromagnetic and amplitude versus offset inversion. The results show an improvement of about 50% in the performance of the proposed methodology when compared with the traditional one. However, as the amplitude versus offset example shows, the differences in the efficiency of the proposed methodology are very likely to be dependent on the shape and complexity of the original polytope. However, it is necessary to pursue further investigations on the regularization of the original polytope in order to fully understand when a simple regularization step based on rotation and scaling is enough. 相似文献
The distribution of Eu between plagioclase feldspar and magmatic liquid has been determined experimentally for basaltic and andesitic systems as a function of temperature and oxygen fugacity at one atmosphere total pressure. Using the approach of Philpotts the ratios in plagioclase and coexisting magmatic liquid have been calculated. These ratios appear to be simply related to oxygen fugacity for the bulk compositions studied here. Using published trace element distribution data for natural rocks oxygen fugacities may be calculated from these experimental results. For terrestrial basalts calculated oxygen fugacities average 10?7 with little dispersion from this value. Andesites average 10?8.1 with considerable dispersion, while dacites and rhyodacites average 10?9.1, also with considerable dispersion. Oxygen fugacities for lunar ferrobasalts cluster tightly around 10?12.7. Data on achondritic meteorites are limited, but calculations indicate oxygen fugacities of two-to-five orders of magnitude lower than lunar ferrobasalts. 相似文献
Within the Ararat Valley (Armenia), a continuously growing water demand (for irrigation and fish farming) and a simultaneous decline in groundwater recharge (due to climate change) result in increasing stress on the local groundwater resources. This detrimental development is reflected by groundwater-level drops and an associated reduction of the area with artesian conditions in the valley centre. This situation calls for increasing efforts aimed at more sustainable water resources management. The aim of this baseline study was the collection of data that allows for study on the origin and age distribution of the Ararat Valley groundwater based on environmental tracers, namely stable (δ2H, δ18O) and radioactive (35S, 3H) isotopes, as well as physical-chemical indicators. The results show that the Ararat Valley receives modern recharge, despite its (semi-)arid climate. While subannual groundwater residence times could be disproved (35S), the detected 3H pattern suggests groundwater ages of several decades, with the oldest waters being recharged around 60 years ago. The differing groundwater ages are reflected by varying scatter of stable isotope and hydrochemical signatures. The presence of young groundwater (i.e., younger that the 1970s), some containing nitrate, indicates groundwater vulnerability and underscores the importance of increased efforts to achieve sustainable management of this natural resource. Since stable isotope signatures indicate the recharge areas to be located in the mountains surrounding the valley, these efforts must not be limited to the central part of the valley where most of the abstraction wells are located.
Volcán Citlaltépetl (Pico de Orizaba) with an elevation of 5,675 m is the highest volcano in North America. Its most recent catastrophic events involved the production of pyroclastic flows that erupted approximately 4,000, 8,500, and 13,000 years ago. The distribution of mapped deposits from these eruptions gives an approximate guide to the extent of products from potential future eruptions. Because the topography of this volcano is constantly changing computer simulations were made on the present topography using three computer algorithms: energy cone, FLOW2D, and FLOW3D. The Heim Coefficient (), used as a code parameter for frictional sliding in all our algorithms, is the ratio of the assumed drop in elevation (H) divided by the lateral extent of the mapped deposits (L). The viscosity parameter for the FLOW2D and FLOW3D codes was adjusted so that the paths of the flows mimicked those inferred from the mapped deposits. We modeled two categories of pyroclastic flows modeled for the level I and level II events. Level I pyroclastic flows correspond to small but more frequent block-and-ash flows that remain on the main cone. Level II flows correspond to more widespread flows from catastrophic eruptions with an approximate 4,000-year repose period. We developed hazard maps from simulations based on a National Imagery and Mapping Agency (NIMA) DTED-1 DEM with a 90 m grid and a vertical accuracy of ±30 m. Because realistic visualization is an important aid to understanding the risks related to volcanic hazards we present the DEM as modeled by FLOW3D. The model shows that the pyroclastic flows extend for much greater distances to the east of the volcano summit where the topographic relief is nearly 4,300 m. This study was used to plot hazard zones for pyroclastic flows in the official hazard map that was published recently. 相似文献
Patterns in seasonal abundance (no. per m2 surface area), growth and biomass (g per m2 surface area) of an annual fish, the Atlantic silverside, Menidia menidia (L.) were investigated in a marsh and more seaward bay region of Essex Bay, Massachusetts from August 1976 to May 1978 using a quantitative beach seining technique. Silverside abundance varied greatly by season and year class during the study period. Abundance was high in 1976 but winter mortality (99%) left an adult density of only .01 per m2 surface area in the marsh during spring 1977. Resultant 1977 year class density in the marsh was 1.88 per m2 by late fall 1977 but winter mortality again produced an adult density of .01 per m2 in spring 1978. Abundance was generally higher in the marsh than in the bay region especially during spring and late fall when catches in the bay were negligible. Based on catch rate comparisons, the summer and fall juvenile abundance of the 1976 year class was much higher than the juvenile abundance of the 1977 year class. Coincidentally, mean lengths and condition of the abundant 1976 year class in the late fall were significantly lower than those of the 1977 year class, suggesting density dependent population regulation. In both years, juveniles grew rapidly and reached full adult size by November when an offshore movement to deeper waters outside Essex Bay occurred. Biomass peaked in the marsh region in late fall 1977 at 7.8 g per m2 wet weight. Winter mortality was size selective, favoring larger individuals. The annual life history design of M. menidia including an offshore winter movement and high winter mortality suggests that silversides represent an important pathway of energy flow from marsh to offshore trophic systems. 相似文献