首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6562篇
  免费   236篇
  国内免费   81篇
测绘学   235篇
大气科学   512篇
地球物理   1528篇
地质学   2179篇
海洋学   529篇
天文学   1218篇
综合类   28篇
自然地理   650篇
  2022年   30篇
  2021年   76篇
  2020年   88篇
  2019年   125篇
  2018年   178篇
  2017年   161篇
  2016年   231篇
  2015年   173篇
  2014年   196篇
  2013年   409篇
  2012年   257篇
  2011年   344篇
  2010年   291篇
  2009年   384篇
  2008年   338篇
  2007年   294篇
  2006年   269篇
  2005年   260篇
  2004年   267篇
  2003年   210篇
  2002年   217篇
  2001年   118篇
  2000年   145篇
  1999年   105篇
  1998年   115篇
  1997年   83篇
  1996年   86篇
  1995年   85篇
  1994年   92篇
  1993年   73篇
  1992年   90篇
  1991年   68篇
  1990年   55篇
  1989年   55篇
  1988年   57篇
  1987年   55篇
  1986年   58篇
  1985年   69篇
  1984年   64篇
  1983年   78篇
  1982年   60篇
  1981年   67篇
  1980年   57篇
  1979年   67篇
  1978年   51篇
  1977年   34篇
  1976年   29篇
  1975年   26篇
  1974年   26篇
  1973年   32篇
排序方式: 共有6879条查询结果,搜索用时 15 毫秒
41.
Five gabarbands (dams), components of integrated soil and water conservation systems, were investigated in the arid region of Sindh Kohistan. The dams are associated with two prehistoric Kot Dijian settlements, Phang and Kohtrash (3200–2800 B. C.). The dams were constructed with relatively permeable materials. Three of the dams, South, East, and North, close off water gaps and a strike valley, respectively, to form a detention basin. The West Dam, located on Phang Nai, upstream of the detention basin removed the coarser sediment fraction from the flows. Spring Dam, located in a water gap to the north of the detention basin, acted as a low-head weir to distribute flow from a perennial spring onto the floodplain of Baran Nai, where double-cropping was probably practiced. Faulting eliminated the spring, which had probably supported the Kohtrash site, and led to construction of the detection basin for the purposes of subsurface storage of detained flows. Association of both modern and prehistoric sites with springs suggests that there has not been appreciable climate change in Sindh Kohistan in the last 5000 years. © 1993 John Wiley & Sons, Inc.  相似文献   
42.
43.
Stratigraphic, topographic, and ground‐penetrating radar data obtained from a ca. 1800‐year‐old embankment and adjacent ditch at the Hopewell Mound Group (Chillicothe, Ohio) are used to validate the archaeological application of a simple finite‐differences diffusion model employed frequently to assess geomorphic change in natural landscapes. Although diffusion models have been used to describe the topographic degradation of landforms in a variety of geomorphic terrains, the approach has not been applied to ancient earthworks in an archaeological context. The results of this study indicate that a variety of initial earthwork forms can result in the sinusoidal profile apparent on the current landscape. Using the model results to interpret the field data, we suggest that the initial embankment form was steeper and the adjacent ditch was deeper. As a result of natural degradation processes, the earthwork widened and flattened over time. These results have broad implications for any study aimed at: (1) assessing the function of original earthwork forms, (2) determining the formation processes of complicated stratigraphies or artifact assemblages, (3) estimating the time and labor investment required for construction, or (4) identifying the socio‐political structures necessary to build earthworks. © 2005 Wiley Periodicals, Inc.  相似文献   
44.
To compare relative reaction rates of mineral dissolution in a mineralogically simple groundwater aquifer, we studied the controls on solute concentrations, Sr isotopes, and rare earth element and yttrium (REY) systematics in the Cape Cod aquifer. This aquifer comprises mostly carbonate-free Pleistocene sediments that are about 90% quartz with minor K-feldspar, plagioclase, glauconite, and Fe-oxides. Silica concentrations and pH in the groundwater increase systematically with increasing depth, while Sr isotopic ratios decrease. No clear relationship between 87Sr/86Sr and Sr concentration is observed. At all depths, the 87Sr/86Sr ratio of the groundwater is considerably lower than the Sr isotopic ratio of the bulk sediment or its K-feldspar component, but similar to that of a plagioclase-rich accessory separate obtained from the sediment. The Si-87Sr/86Sr-depth relationships are consistent with dissolution of accessory plagioclase. In addition, solutes such as Sr, Ca, and particularly K show concentration spikes superimposed on their respective general trends. The K-Sr-87Sr/86Sr systematics suggests that accessory glauconite is another major solute source to Cape Cod groundwater. Although the authigenic glauconite in the Cape Cod sediment is rich in Rb, it is low in in-grown radiogenic 87Sr because of its young Pleistocene age. The low 87Sr/86Sr ratios are consistent with equilibration of glauconite with seawater. The impact of glauconite is inferred to vary due to its variable abundance in the sediments. In the Cape Cod groundwater, the variation of REY concentrations with sampling depth resembles that of K and Rb, but differs from that of Ca and Sr. Shale-normalized REY patterns are light REY depleted, show negative Ce anomalies and super-chondritic Y/Ho ratios, but no Eu anomalies. REY input from feldspar, therefore, is insignificant compared to input from a K-Rb-bearing phase, inferred to be glauconite. These results emphasize that interpretation of groundwater chemistry, even in relatively simple aquifers, may be complicated by solute contributions from “exotic” accessory minerals such as glauconite. To detect such peculiarities, groundwater studies should combine the study of elemental concentration and isotopic composition of several solutes that show different geochemical behavior.  相似文献   
45.
46.
47.
48.
49.
Ganymede's grooved terrain likely formed during an epoch of global expansion, when unstable extension of the lithosphere resulted in the development of periodic necking instabilities. Linear, infinitesimal-strain models of extensional necking support this model of groove formation, finding that the fastest growing modes of an instability have wavelengths and growth rates consistent with Ganymede's grooves. However, several questions remain unanswered, including how nonlinearities affect instability growth at large strains, and what role instabilities play in tectonically resurfacing preexisting terrain. To address these questions we numerically model the extension of an icy lithosphere to examine the growth of periodic necking instabilities over a broad range of strain rates and temperature gradients. We explored thermal gradients up to 45 K km−1 and found that, at infinitesimal strain, maximum growth rates occur at high temperature gradients (45 K km−1) and moderate strain rates (10−13 s−1). Dominant wavelengths range from 1.8 to 16.4 km (post extension). Our infinitesimal growth rates are qualitatively consistent with, but an order of magnitude lower than, previous linearized calculations. When strain exceeds ∼10% growth rates decrease, limiting the total amount of amplification that can result from unstable extension. This fall-off in growth occurs at lower groove amplitudes for high-temperature-gradient, thin-lithosphere simulations than for low-temperature-gradient, thick-lithosphere simulations. At large strains, this shifts the ideal conditions for producing large amplitude grooves from high temperature gradients to more moderate temperature gradients (15 K km−1). We find that the formation of periodic necking instabilities can modify preexisting terrain, replacing semi-random topography up to 100 m in amplitude with periodic ridges and troughs, assisting the tectonic resurfacing process. Despite this success, the small topographic amplification produced by our model presents a formidable challenge to the necking instability mechanism for groove formation. Success of the necking instability mechanism may require rheological weakening or strain localization by faulting, effects not included in our analysis.  相似文献   
50.
We present a mineralogical assessment of 12 Maria family asteroids, using near-infrared spectral data obtained over the years 2000-2009 combined with visible spectral data (when available) to cover the spectral interval of 0.4-2.5 μm. Our analysis indicates the Maria asteroid family, which is located adjacent to the chaotic region of the 3:1 Kirkwood Gap, appears to be a true genetic family composed of assemblages analogous to mesosiderite-type meteorites. Dynamical models by Farinella et al. (Farinella, P., Gunczi, R., Froeschlé, Ch., Froeschlé, C., [1993]. Icarus 101, 174-187) predict this region should supply meteoroids into Earth-crossing orbits. Thus, the Maria family is a plausible source of some or all of the mesosiderites in our meteorite collections. These individual asteroids were most likely once part of a larger parent object that was broken apart and dispersed. One of the Maria dynamical family members investigated, ((695) Bella), was found to be unrelated to the genetic Maria family members. The parameters of (695) Bella indicate an H-chondrite assemblage, and that Bella may be a sister or daughter of Asteroid (6) Hebe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号